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i 1 Introduction

1.1 Ada

. Ada is the United States Department of Defense's (DoZJ

ft newest programming language. Ada was born in an era ot

rising software costs and a proliferation of programimnq

3 languages within the DoD. To halt th!s software crisia, t.

DoD developed Ada. Ada was to become the common, hlgh-ot:do

programming language for all organizations within the VoV.

3 Since the majority of software costs in the DoD vore con-

nected with embedded systems (5), it is not surprising t t

3 Ada was designed with real-time progranming In mind.

Current estimates [181 show that the DoD spends 11;

I billion a year on software for embedded, real-time compitvt

3 systems for missile guidance, communications control, ard

weapons firing. This value is growing at a compound annual

I rate of 17%. The Ada share of this market Is Increasing *.

Ada receives acceptance and older languages are phased out

U Initially, Ada received staunch opposition and required the

3 DoD to take steps to ensure Ada's acceptance.

DoD Directives 3405.1 and 3405.2 (21,22) were drafted

3 and signed into effect in 1987 making Ada the single, comon,

high-order programming language within the DoD. Addition-

I ally, these directives mandated the use of Ada In Intel-

ligence systems, command and control systems, and weapons

systems. The North Atlantic Treaty Organization (NATO) has

3 also established policies that mandate the use of Ada abroad

I
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trict4Lii the 84f9e04h " A4 LA.Y* SPOe station project,

A10-v LL4ft ,04ftC. ft *t latt cntolsystems.I

vtthln U'Ie OtO A44 ul.*A. be %00e4 to program the on-board,3

06644404. gLtted e * e0%Iset *rot~ Og the Al Force's

Advonet ottt, VL4fte. tfte A~y'O Light Helicopter3

CJS?0 44M~ * 444 tS W-4 A4vwetc*4 ?.*.tic~l Aircraft 118).

T'h . to A44 40 str*n n not only In the United I
Itatem b1t 06#04 0*1,* Tis Coimttment to especially

Ott Oq tLh the aice of e4dWd9, Ce41-tmOS systems.

L1 ptspecfe. Computation

The conocipt of topecise computation is quite straight- I

focved [LL-L)l. For some applications, approximate results

ate adequite when the nature of the computation Involves

Lengthy computation tie . Under real-time computation 3
constctaintso these lengthy computations may never be able to

finish. Ehen the degree of accuracy of the intermediate 3
resultq -f a computation is non-decreasing as more processor

time is spent to obtain a result, the process Is called a

monotone process (131 If the monotone process completes 3
normally, It vill produce a precise :esult. However, if the

monotone process times out prior to completion, it produces a 3
res'ilt that is not precise, or Imprecise. Although the

Imprecise result is not as precise as originally desired, it S
may still be of use to the application. I

I
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5 Acceptable imprecise results can be returned when the

structure of a computation is iterative (20]. Many iterative

I numerical computations fall into this category (15,161.

Monte Carlo simulation is another prime iterative target.

Monte Carlo simulation has been used to determine radiation

3 shielding and nuclear reactor criticality [9]. An example of

the Jacobi method used to solve linear systems of equations

I and an example of Monte Carlo simulation used to perform

i integration of a curve are presented later in this paper as

imprecise computation examples. Iterative computations are

3 not the only type of computation that can be implemented as

an imprecise computation. Additionally, some non-iterative

3 computations can be reformulated as iterative computations

and used as an imprecise computation [3].

There are two language primitives required by the

programmer to implement an imprecise computation application.

These primitives are "impreturn" and "impresult" [11,12].

3 Impreturn sends imprecise results and error indicators from

the callee to the caller. Impresult binds a handile proce-

dure to an imprecise computation. The handler is called to

3 "massage" the imprecise result before it is returned.

Imprecise computation is especially applicable to

3 real-time computer systems. Under severe time constraints,

the imprecise computation will return an imprecise, though

correct value. It is here that the link between Ada and

3 imprecise computation lies.

I
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1.3 Ada and Imprecise Computations

There has been no In-depth, published vota *ccowtstea

in an effort to correctly Implement Lapr*ctoe cowfutsti;re .t. I
Ada. Although this topic has been cuusorily a441....4

(2,13], no immediately implementable solutiono hove tmwt.

identified. The comittment to Ad* In the ceal'. ms *: .*a ;* 3
sharply growing, while the concept of imptec:#o S, .

continues to increase Its following. Sy Impet.'.(. I
imprecise computations In Ads, the ,e4!-tlse rees 4.. I
is given a viable tool In designlnq *tate of tpe art, t* ;

tolerant, real-time computer systeme. ft t lot t,1%;* 100c. 3
that this research project was undertaken.

I
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.L Go44to *A%4 Zittost

9J Th~e #ele48eI~ @1*0*1* 1i44 wI19s I le *. of 46..0

i n04 taft h **4. 0 '-& * -

3 t4t4A Pde L neft r *f t0o yIC4d F-P.~04 hb.e a ~e

*jppac o io oart "8 * o tn4 l4foJtftie Vo4 P a , Veon of as

I tddInq' 00o4taoeftt. Sn4 ;* :** * 48.sft"S". .* ol~ 0. .

Computat Loft 19)..AttIO w b4 0 * *;1 ro t.fe4 04*o4~o

t I t :oh*IWeOLY *tgoft4 vtftloo Coft*.4oration foe* ;Vot to

3 er..tInq a wet I *ttgct%&te *01twego eriC... ?h.e 'Ot twi

vouJLd tranoLate to ease of %Joe Ott tfte parC of the rca . ;Ame

3 system desiqn4r wl~o would 4410timately use tthe lsaprcime

I 04sp'tatjOn mod0uIQ. The Cttet o * V8~'atjrnq #4Ch

approasch to ieplomintinq Imprecise computations In Ads

3 evolved from these considerations.

The evaluation criteria represented varied requirements,

3 desires and concerns. because this implementation would be

employed In a real-time system, efficiency was a key require-

ment. An Inefficient implementation would not be tolerable.

3Portability was another vital concern. Ada was designed to

be portable. Because the name "Ada is trademarked, no

I dialects or subsets are legally allowed. The implementation

should in no way rely on the underlying machine or operating

system. If the implementation were too unruly or difficult

3 to understand, it would probably not be utilized. Therefore,

I
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e4se of programing w4s a crucial criterion. It Is easy to

find a solution to a problem when the constraints on the

problem ace changed in midstream. Likewise, It is easy for

someone approaching the problem of implementing imprecise

computations In Ada to come up with an easy solution, but one

which involves changes to the Ada standard. The goal of this 3
research was to implement imprecise computations in standard

Ada, without additions that are contrary to the standard. 3
Finally, the implementation would have to produce correct

results according to the tenets of imprecise computation.

In summary, each approach was analyzed and evaluated 3
based on the following criteria: efficiency; portability;

ease of programming; whether or not it could be Implemented 3
uaing the current (standard) version of Ada, and; correct-

ness. Three general approaches to implementing imprecise I
computations in Ada were identified. 3

2.2 Approaches to Implementation 5
There were three approaches to implementation of

imprecise computations in Ada identified. Subsequently, each 1
approach was analyzed and evaluated based on the criteria !

defined in Section 2.1. The approaches identified involved

shared memory and variables, asynchronous transfer of 3
control, and atomic computation loops.

I
I
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3 2.2.1 $hag,d ,i..y / SPealMr V~ ,

in thi eh o opati I0s0 t*e e, C00V814t 4O46 41 04* 4 al&A

containinq OI on 4'.4blo, *%JKh 46 ". 04A t.9. tlme.tA

3flag location woqlkd oe otalisod vfosit a sto& ws-

flag a timeout conditiont. The co"Utot'ion to~*& WW&.!4 tx.0

Urequired to check this flog bap44te4ly 401in'e 110 O&WCW11ct4

This requires th1lat each Computation tokan& coAoar 4 PG;;jo-

I mechanism. Polling not only violates the pritcplo of

modularity, but It also Impose* siqniticant ovethoed it dcr,*

frequently enough to guarantee fast response 12). Po*:1rig

I reduces the efficiency of the executing code. An *4d1tional

problem lies in the use of the prage *SHAREDO. The Ada

3 standard (231 pxovides pragma SHARED to allow two tasks to

communicate via sharei variables. These shared variables are

Iidentified as such by the pragma SHARED statement. This

I ensures that the tasks are properly synchronized when

accessing the shared variable. However, the Ada development

3environment available to us, the Verdix Ada Development

System (VADS), does not implement the pragma SHARED (24).

Due to these insurmountable problems, this approach was

*rejected for implementation.

1 2.2.2 Asynchronous Transfer of Control

There are basically two different ways any task can

Iinfluence another task. A task can abort another task or it

5can rendezvous with it. The abort statement is not an

I
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otlo a 0WK1994 4s 1J." I%*ID~ i~ 8 66 ed*W €S, &or q

d1ftOf &oI el Ct4* SON&l# O1t IOW1&&*.O fttW * .ollov IoI
.996C115 em.1c ~ 0800"1 16 04t*Ifo40 to4 a. 000401

0at aoal @9 tetw1eea be to 0 *ae# W t640

e~tsict le ft* *peadeu *bog% I @a,09 4 4 1 4bt P404:6

thOee WO m1 m A"g 1 Me1o me"oft *V3LAIOp ,,-OeVe,64
aetbtel reel. *eeeeot lRl pe~lao awl Ill IhltIe e e*e*. q

ciltIcat s~qlIU. .ad ew l e etul4 le1.lr 8. a e;l

nagy vesslos .9 Dde I&O)o !11e *octio Ie V&LAUI emo ¢oekb. 3
of belnq aoloed ta * eho toaoe. mNew e, Idle ealso W

phased out to the A". et aed. I

2010 ImoeoCh k" Ottpted to *9ut Ike I%* lA o1s 3
o4e1 and allow a tass to seycykeem lp IettOfwp *othat

task. At Delft UlVOcotty .O ?chT elUqy, bose0ecere e h~e 3
constructed a custom Implemtatlea 1 #A thet llo,

asynchronous Interrupts I119. Bkee IZ1 poeeuhto a Pooibl. !

Implementation of Impreciso c€ ptatlmo, but relies on a

non-standard peckaqo to asynchronously talse oceptioe.

Both of these approaches are comprised of non-stanrard Ads

and hence are not portable.

Asynchronously ralinfq an exception In a conputation I
would be a stralqhtforward mechanism towards Implomntinq

imprecise computations in Ada. Unfortunately, there exists

no standard Ada way to accomplish this. Any non-standard 3
solution would not be portable and not acceptable. This

approach was summ&rily rejected. I

I
I



I

1 9

5 ~ .2.)Atomic Co"-Atet to& Loop

Thi. 6 *4ee4a * e tO4 wih tite cofcopt of treating the

comeutatlOa oep 4* *a 6900i1c qtt. The loap vwuld be

5tg[ 1ieq#4 oaCt Itolei.o ty mAi Co 0 d A4O * fUi attClient

time v~s av*a ilo ple. te l ie 4etdlo t. The cowutation

Sloop wo%&4 oet e twe#ou. .e *at* it *to.ttd the Current

%te otlon Thts epp49ch ittto C *t Otgi't %tiing Concerns

I aIe. of1 it" postoCeaece ef the *eA taclfn model lelemwin-

I tat ioes.

The Ad. te61q model has be sharply critlcized due to

IIts allegod oinfitcienc. 1ine doeieeoe of the ser Me0lfire

missile 114) opted net to use the teooist fletures because of

U Icrtical time Cortoislts. A receMt stwdI ws conducted by

SSurtes and ieolsef (7 to determiet4 the overhed of Ads

tasking facliities. The m-eornemto vore me. oe a Digital

3 Squlpeent Corporation, (ODCI VAX 0600 tiswing DOC Ade V.2.

As a baseline, a slet* procedure cell required 11 micro-

seconds. but a simple. non-ptemter renidetvous reqult4d 503

Icroseconds. This disparity mendated a jdicious use of the

rendezvous in the Implementation of imprecise c01ptations In

3 Ada. For this reason, the atomic computation loop approach

vs broken down into a synchronous version and an asynchro-

S nous version.

In both versions, a computation task Is created that

perform the required function. This task contains the

3 computation loop that refines the precision of the result.

I
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The computation loop contains IMPRETURN statements that 5
return the current, imprecise result. When the deadline

occurs before the computation loop achieves a precise result, 5
the appropriate handler is invoked and the computation loop

is stopped. If the computation loop runs to completion, it

signals via the compute rendezvous in the synchronous version 3
and via a boolean flag in the asynchronous version.

As the name implies, the asynchronous version does not 5
interfere nor does it rendezvous with the computation task.

The asynchronous version initializes the computation loop I
with input parameters by way of a TIMER task. After initial- 3
ization, the TIMER task starts the computation loop. The

loop continues unmolested until it either completes or is 5
stopped due to the deadline. The TIMER task has a higher

priority than the computation task which guarantees that the

TIMER task will execute when necessary. The TIMER task

monitors the progression of time as it approaches the

deadline by delaying a duration proportional to the amount of 3
time left before the deadline. In the meantime, the computa-

tion task Is storing imprecise results and error indicators I
via the IMPRETURN call. When TIMER times out, it grabs the

most recent copy of the imprecise results, invokes the

appropriate handler, and then returns the result. If the 5
computation loop completes, it signals via an IMPRETURN call

with the final result value and zero error indicator. 3
The synchronous version relies on frequent rendezvous.

I
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5 This version initializes the comotastoa loop wit# itput

parameters and then calls for a ifendeuveo with the co"Pufs

tion task each time the comput* loop Is to be *aoctd. Wh"e

3 the deadline occurs, the appropriate handler is iavoted oen

the computation loop Is stopped. It the computatlot loop

3 runs to completion, It signals via the com4ate entry cell end

is subsequently stopped.

I Both versions have their respectlve advantages ee&

5 disadvantages. The synchronous version Is less efficient

because of the frequency of rendezvous, but maintains more

5control over the computation loop. Conversely, the asynchro-

nous version requires no rendezvous with the computation loop

3 and relies on the run-time system's efficient and correct

implementation of the Ada "delay" statement. Both versions

required no modifications to standard Ada. Efficiency, a key

3 design criterion, was initially a major detractor of the

synchronous version. A system spending more time completing

3 rendezvous and less time computing was Intolerable. However,

study of potential imprecise computation targets such as the

Jacobi method for solving linear systems of equations (15,161

3 showed that these computations may only loop about 10 to 50

times before a precise result is calculated. The rendezvous

S overhead is trivial compared to a Monte Carlo application

which might loop about 10000 times before a precise result is

obtained. It was apparent that both versions were viable

3 approaches to Implementing Imprecise computations in Ada.

I
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3 Implementation

3.1 Ada Specifics

To promote sound software engineering principles, the I
data type definitions, variable declarations, and associated 3
procedures of the imprecise computation system are located In

a single, strongly cohesive module. In Ada, such a module is 3
known as a package. Further, because the result type of each

imprecise computation Is unique, the imprecise computation I
package would have to allow differing result types. For

example, the Jacobi imprecise computation requires a 3-

element array of floating point numbers as its result, while 3
the Monte Carlo Imprecise computation of the area of a circle

merely requires a single floating point number for its I
result. It would be quite unruly to construct and maintain

an imprecise computation package for any conceivable result

type. Fortunately, Ada provides a means to circumvent this 3
situation.

Ada provides the "generic" package. This allows the 1
designer to implement a mechanism without ties to specific

data types. According to Booch (5), generic program units I
define a unit template, along with generic parameters that 3
provide the facility for tailoring that template to particu-

lar needs at compilation time. At compile time, a generic 3
package is Instantiated by specifying the actual parameters

to be substituted for the generic parameters, thus creating I
an instance of the package. Generic parameters can be types, 3

I
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5 values, objects, and/or subpeoaraws IS).

One of the generic parameter typee gopgeosats the

imprecise computation. Because it is aoceesary to# the

5imprecise computation to maintain Its state latormation, the

imprecise computation mat be constructed as a task.

3 Accordingly, one of the generic paralmters It the Imprecise

computation task type and another peramlter to an access type

i that points to the task type. Other generic parameter types

3 include the result type, the error indicator type, and the

input type. Generic parameter subprogram are used to call

5 the entry points in the imprecise computation esk. These

procedures are necessary because the imprelse computation

I package has no knovledge of the speciCic task structure until

instantiation. Therefore, the task entry points cannot be

hard-coded Into the Imprecise computation package, even if

5the entry names are standardized. The actual procedures

corresponding to the generic subprograms are simple, one line

3programs that call the appropriate entry points. These entry

points vary between the asynchronous and synchronous Impre-

cise computation packages.

3Through the use of the generic package, single synchro-
nous and asynchronous imprecise computation packages can be

3constructed. At compilation, new instances of these packages
can be created by specifying the appropriate generic param-

Ieters. This allows the luxury of having one asynchronous
1package and one synchronous package to modify and maintain,

!
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but at the same time allowing unlimited instances based on

the specific computation. I
3.2 Synchronous Imprecise Computation

The package SYNCHRONOUSIMPRECISECOMPUTATION has been

implemented as a generic package. This package is composed 3
of generic parameters required for instantiation and proce-

dures visible from outside the package. i

3.2.1 Generic Parameters U
The package SYNCHRONOUSIMPRECISE_COMPUTATION contains 5

the following generic parameter list:

type COMPUTATION is limited private; U
type COMPUTATIONPTR is access COMPUTATION; 5
type RESULTTYPE is private;

type ERROR_INDICATORTYPE is private; I
type INPUTTYPE is private;

with procedure INITIALIZE(THECOMPUTATION : in
COMPUTATIONPTR;

INPUT : in
INPUTTYPE);

with procedure COMPUTE(THECOMPUTATION : in
COMPUTATIONPTR;

COMPUTATIONCOMPLETE : out
boolean);

with procedure HANDLE(THECOMPUTATION : in
COMPUTATION PTR;

HANDLER_"UMBER : in
integer; I

LASTVALUE : in
RESULT_TYPE;

LASTERROR_INDICATOR : In

I
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5 EO I CATO* _TYPE J

with procedure STOP(THBCOMPUTATIOI ; to C0NVATCWfPiTI
The type COMPUTATION corresponds to the task tye ot the

3 desired imprecise computation. The task type *euveo s a

template that is used to create instances ot task ob)ecte

[51. In this way, multiple Imprecise comutation tteoe wy

5 be active simultaneously. The task tp :. dtcIau*4 a

limited type because neither assignment nor the pedotei.d

3 comparison for equality and Inequality are detlned lot

objects of task types 1231.

I Th~e type COMPUTATIONPT2 provides an aecces type to the

3 task type COMPUTATION. When a pointer of type

COMPUTATIONPTR is allocated using the Onew* statennt. ,a

5 task in the form of task type COVPUTATION is created. the

pointer variable nov points to the active task and I* used to

Ireference the task entry points. This pointer is needed in

the imprecise computation package because it effectively

allows a task to be passed as an argument to a procedure.

5 Actually, the pointer Is being passed but the result is the

same. In this way, an allocated pointer variable of type

ICOMPUTATIONPTR is an effective and efficient means of

5 manipulating the computation task.

The generic parameter RESULTTYPE is merely the data

5type of the result that the imprecise computation generates.
Here lies the beauty of Ada's generic facility, for any valid

3 data type can be used to instantiate the generic package.

I
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The type hrRIORJNDICAO)RTYPZ provides the means of deter-

mining the exact precision of an imprecise computation's

result. It can be instantiated with the data type that is I
most applicable to the imprecise computation.

The generic paramter INPUTTYPE is the data type used

to Initialize the computation task. Often, several items are 3
needed to properly initialize a computation task. In this

case, INPUTYPK should be instantiated with a record type 5i
composed ot the necessary items. The remaining generic

pramters in the package SYNCHRONOUS_IMPRECISECOMPUTATION I
are generic subprograms. 5

lach generic subprogram is needed in order to rendezvous

vith various entry points of the computation task. The user

of the SYNCHRONOUSIMPRECISE_COMPUTATION generic package must

construct his own computation task type. This task type mustI

include several entry points. An initialization entry point 3
receives input data. A compute entry point performs one loop

oftecomputation. One or more handler entry points are 3
required to manipulate the imprecise result. Finally, an

entry point to stop the task is required in lieu of the abortI

option. The names of these entry points are not relevant,

but must be properly reflected in the procedures used to

instantiate the generic package. For example, consider a 3
task type with the following structure: I

task type EXAMPLE is
entry INITIALI ZE_THE_TASK (...) ;
entry COKPUTEONELOOP (...) ; I

I
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3 entry HANDLER(...);
entry HALT_THETASK;! end EXAMPLE;

The procedure for stopping the task that would be used to

I instantiate the generic package would look like the

i following:

procedure STOP_TASK(COMP_PTR : in COMPUTATXONPTR) is
I beglCOMP_PTR.HALT_THETASK;

end STOPTASK;

a Note that the procedure can have any name. At instantiation,

I the procedure name is bound to the generic subprogram 8TOP.

So whenever STOP is called in the imprecise computationI mechanism, STOP_TASK will be called at run-time. Each

I generic subprogram has clearly defined purposes.

The procedure INITIALIZE takes two parameters,

3 THE_COMPUTATION and INPUT. THECOMPUTATION references the

computation task calculating the imprecise computation.3 INPUT is the data required to properly initialize the

i computation task. This procedure must be instantiated vith a

simple procedure that merely requests a rendezvous with the

3 initialization entry call of the computation task.

The procedure COMPUTE initiates a rendezvous with the3 compute entry point of the computation task. Procedure

COMPUTE takes two parameters, THE_COMPUTATION and

I COMPUTATIONCOMPLETE. The former is a pointer to the

3 computation task. The latter is a boolean flag that is set

I



by the comfVtatIoat task to *l01t the 10010C100 C*Mtutdti~l

machanils that a precise r.al has "A pld.co4. It the

computation task does not plodoce * pecios result by it*

deadline, a handles task most be called.3

The pocedure WAMOS Initiates a gefidesvous with 0

specitted handles entgy point within tho comptsttion took.3

?he parameters for this procedure are TtSC0WV?&TIO*,

KAMDLUPMSB, LAS?_VALUS, and LA2?_=ROSINDI CAT0R. Again,3

?142CONPUIATIOW to a pointer reltencing the computation

task. Those way be more than orne handler entry point In the

computation task. ?he parameter NAMDLZMNU#4&U specifies3

which handler entry point to call. The handler entry points

my be Implemented as a gamily of entry calls with a discrete3

tange (231. If not, procedure HAISOL will be required to

decipher the value of HAUDL3R.WUNS9R and call the appropriate

entry point. The parameters LA8T-VALUX and3

LAS?3BRRORJNDICATOR represent the most current Imprecise

result and error Indicator returned by the Imprecise computa-3

tion task. They are passed to the handler entry point where

they can be modified If necessary. A modified impreciseI

result ani error Indicator is saved in the standard method byU

Issuing an IMPRETURN call at the end of the handler rendez-

vous. After a precise result has been computed or a handler

executed, the computation task must be stopped.

The procedure STOP Initiates a rendezvous with the stopI

entry point of the -omputation task. A boolean flag is then3
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3 set and subsequently causes an exit from the internal loop

structure. Procedure STOP requires one parameter,

U THECOMPUTATION. This parameter is a pointer referencing the

computation task.

At compilation time, all of the preceding generic types

3 and subprograms are instantiated with the data types and

procedures developed by the user. After instantiation, a

I custom synchronous imprecise computation package exists in

the user's library. Now, the user has the capability of

accessing the procedures bundled in the synchronous imprecise

5 computation package.

I
3.2.2 Procedures

There are two procedures in the generic package

3 SYNCHRONOUSIMPRECISECOMPUTATION as dictated by the tenets

of imprecise computation [11-133. However, the name of the

3 procedure IMPRESULT has been changed to IMPCALL because it

seemed more fitting of its role. The other procedure remains

as IMPRETURN. The procedure declarations are defined in the

3generic package specification in the following manner:
procedure IMPCALL(THECOMPUTATION : in out

COMPUTATIONPTR;
THEHANDLER : in integer;
DEADLINE : in

CALENDAR.TIME;
INPUT : in INPUTTYPE;
FINALRESULT : out3 RESULTTYPE);

I
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procedure IKPRETURN(INTERMEDIATE_RESULT : in

RESULT_TYPE;
ERRORINDICATOR : in

ERROR_INDICATOR_.TYPE); U
Procedure IMPCALL requires five parameters. Parameter 3

THE_COHPUTATION is a pointer to the computation task that
will be computed in an imprecise fashion. In the event the I
computation task does not complete before its deadline, 3
parameter THE_HANDLER indicates which handler routine to

call. Parameter DEADLINE specifies the absolute time when 5
computation should cease. The computation task is ini-

tialized with the contents of the parameter INPUT. Finally, I
the out parameter FINAL_RESULT is the precise result if the 5
computation task completes, or the imprecise result after

being passed through the handler routine. 3
Procedure IMPRETURN is the means by which the computa-

tion task returns imprecise results and error indicators to I
the imprecise computation mechanism. The two parameters of

procedure INPRETURN reflect this design. Parameter

INTERMEDIATERESULT is the current imprecise result, while 5
parameter ERROR INDICATOR indicates the precision of this

result. 3
An imprecise computation application can only interface

with an instantiated imprecise computation package via the

two procedures IMPCALL and IMPRETURN as specified in the 5
package specification. The package body contains the code

that implements these two procedures. However, the data 3
I
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types, 
variables, 

adprocedures 
intepackage 

body are

I 
within 

the package 
body itself 

(231. 
The package 

body of

5 
SYNCHRONOUS_IMPRECISE_COMPUTATION 

contains 
two variables 

that

are 
global 

within 
the 

package 
body.

ICURRENT_VALUE 
: RESULTTYPE;CURRENTERROR_INDICATOR 

: ERROR_INDICATORTYPE;These variables 
reflect 

the current 
imprecise 

result and its

I 
associated 

error 
indicator. 

These 
variables 

are updated
solely 

by the IMPRETURN 
procedure. 

Procedure 
IMPCALL 

is

I 
implemented 

in the package 
body of

3 
SYNCHRONOUS_IMPRECISE_COMPUTATION 

in the following 
way:

I 
~procedure 

IMPCAL 
L(THE COMPUTATION 

: in outo 
PU A O _ T ;

T H EHAN 
D L E R 

: i n 
i n t e g e r ;

DEADLINE 

: in 
CALENDAR.TIME;

INPUT 

: in 
INPUT_TYPE;

IFINAL_RESULT 
: out RESULT_TYPE) 

is

l 
COMPUTATION_COMPLETED 

: boolean;
TIME_HACK 

:CALENDAR.TIME;

I 
beiINITIALIZE(THE_COMPUTATION,

beginINPU 

);
loo COMPUTE 

(THE_COMPUTATI 

ON,COMPUTATION_COMPLETED);exit when COMPUTATIONCOMPLETED;
~TIME_HACK 

:= CALENDAR.CLOCK;

if CALENDAR.">"(TIME__HACK,

DEADLINE) 
then

THE_HANDLER,
CURRENT_VALUE,

exit;I
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end If;
end loop;
STOP(THECOMPUTATION);
FINAL_RESULT :- CURRENT_yALUE;

end IMPCALL;

The algorithm involved i straightforward. The computa- 3
tion task is first initialized by calling the procedure

INITIALIZE. This generic subprogram in turn completes a U
rendezvous with the computation task, passing it the appro- 3
priate data in parameter INPUT. The algorithm then enters a

loop. This loop will be executed when the computation

completes or the deadline is reached. First, the procedure

COMPUTE is called. This generic subprogram in turn enters I
into a rendezvous with the computation task at the compute 3
entry point. Remember, this rendezvous causes the computa-

tion task to complete one iteration of the computation. If 3
this causes the computation to complete, it signals so via

the COMPUTATIONCOMPLETED parameter. After COMPUTE finishes, I
the loop will be exited if the computation has completed. If g
not, the system clock is sampled and compared to the dead-

line. If the deadline has expired, the procedure HANDLE is 3
called which in turn initiates a rendezvous with the computa-

tion task at the handler entry point. The loop is exited I
after the procedure HANDLE completes. If the deadline has

not expired, control returns to the top of the loop. After

termination of the loop, procedure STOP is called, ultimately 3
completing a rendezvous with the computation task at the stop

entry point. The final precise or imprecise result is then 3
!
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3 copied to the parameter FIMALPSSUL? and subsequently passed

back to the caller.

I The procedure XNPRZII*M to the means by which the

5 computation task returns imprecise results and error Iradiea-

tors. There Is no algorithm required because this process

3 merely Involves the passing and subev-.4ent storing of date.

This procedure Is Implemented In the following way:

procedure IMPRBTURN (INT3RM3DIAThRBBULT : In
USUL.,TYPZ;

3RRORINDKCATOR : InI ERRORJNDXCATOR.TYPE) Is

beginI CURRENTVALUE I NTBRNEIATEhRSDULT;
CURRENTXRROR_INDICATOR :- RRORINDICATOR;3 end IMPRETURN;

The input parameters INTERMEDIATE_RESULT and BRRORJNDICATOR

are copied to the hidden variables CURRENTYALUE and

3 CURRENT_EARRORINDICATOR, respectively.

The complete package specification and package body of

3 SYNCHRONOUSIMPRECISECOMPUTATION can be found In Appendix A.

Figure 1 presents the synchronous imprecise computation

mechanism in a graphical manner, using the symbols defined in

5 [5). This approach to imprecise computations has been

implemented in standard Ada code and should compile on any

3 validated compiler. The user need only Instantiate this

package with his own data types and subprograms. Actual

I Imprecise computation examples using this package are given

3 In Section 4.
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Package Irnp..CompI
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Figure 1. Synchronous Imprecise Computation3



I
1 25

3 3.3 Asynchronous Imprecise Computation

The package ASYNCHRONOUS_IMPRECISBCOMPUTATION has been

Iimplemented as a generic package. This package is very

5 similar to the synchronous implementation in term of user

interface, but internally is quite different. Like the

3 ycrnu version, thspackage iscomposed ofgeneric

parameters required for instantiation and procedures visible

I from outside the package.

1 3.3.1 Generic Parameters

3The package ASYNCHRONOUS_IMPRECISECONPUTATION contains
the following generic parameter list:1

type COMPUTATION is limited private;

3type CONPUTATIONPTR is access COMPUTATION;
type RESULT_TYPE is private;

Itype ERRORINDICATOR_TYPE is private;
3type INPUTTYPE is private;

with procedure START_COMPUTATION(THE CONPUTATXON : in
~COMPUTATI ONPTR;3INPUT : in

INPUTTYPE);

with procedure HANDLE(LAST VALUE : in out
RESULTTYPE;

LASTERRORNDICATOR : in out3 ERRORINDICATOR_TYPE);

The generic data types are identical to those in the generic

I package SYNCHRONOUS_IMPRECISE_COMPUTATION. However, the

3generic subprograms are quite different. Not all of the

I
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generic subprograms in this asynchronous version are used to 3
rendezvous with the computation task. The user of the

generic package AMYNCRONOUSMPKCIS._COKPUTATION must I

construct a task type that contains a single entry point. p
When this entry point is called, input data is passed to the

task. After initialization, the task begins iterating and

producing imprecise results. The task proceeds without any

further interruption or rendezvous, asynchronously. I
The generic procedure START_COMPUTATION is the procedure

called by the imprecise computation mechanism to initialize

the computation task. The computation task receives input, 3
initializes, and then starts iterating. Procedure

STARTCOMPUTATION requires tvo parameters. Parameter 3
THE_COMPUTATION is a pointer to an active task. The neces-

sary input data is passed via parameter INPUT. Because the I
computation task type has only a single entry point, 3
START COMPUTATION is the only generic subprogram needed to

initiate a rendezvous.

By virtue of the definition of a rendezvous (23), an

asynchronous approach to imprecise computations cannot I
utilize this synchronous mechanism. In the synchronous 3
implementation, handler entry points are included in the

computation task type. This is possible because the synchro- 3
nous imprecise computation mechanism closely governs the
executing computation task. However, in the asynchronous U
version, the computation task is turned loose. When a 3

I
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3 deadline is reached, the imprecise result must be immediately

passed to a handler. For this reason, the handler routine is

not part of the computation task type, but is a separate

5procedure. Therefore, the generic procedure HANDLE does not
require the task pointer variable required by the synchronous

handler. Also, the synchronous version includes a handler

number which facilitates the use of entry families when the

I handler Is an entry call. This parameter has not been

3 included In the asynchronous version.

The generic procedure HANDLE requires two parameters.

3 The parameter LAST_VALUE supplies the handler routine with

the last imprecise result returned via an INPRETURN call.

ILikewise, the parameter LAST_ERROR_INDICATOR provides a means
of determining the precision of LASTVALUE. Note that both

of these parameters are of mode "in out". This is necessary

3because the asynchronous handler is a separate procedure and
not a part of the task environment as it is in the synchro-

*nous version.

When the preceding generic types and generic subprograms

are Instantiated with appropriate data types and procedures

5at compilation time, a custom asynchronous imprecise computa-
tion package is created and placed in the user's library.

*This package contains the bundled procedures that form the

crux of the asynchronous imprecise computation mechanism.

I
I
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3.3.2 Procedures

In accordance with the theory of imprecise computations

(11-131, there are two visible procedures in the generic 3
package ASYNCHRONOUS_IMPRBCISE_COMPUTATION. Like the

synchronous version, the name of the procedure INPRESULT has I
been changed to IMPCALL. The other procedure remains as 3
TMPRETURN. The procedure declarations are defined in the

generic package specification in the following manner:

procedure IMPCALL(THE.COMPUTATION : in out
COMPUTATIONPTR;

DEADLINE : in
CALENDAR.TIME;

INPUT : in
INPUTTYPE;

FINALRESULT : out
RESULTTYPE); I

procedure IMPRETURN(INTERMEDIATERESULT : in
RESULT TYPE;

ERROR_INDICATOR : in
ERROR_I NDICATOR-TYPE;

STOPFLAG : in out
boolean);

Procedure IMPCALL requires four parameters. The

parameter THE COMPUTATION is a pointer to the imprecise

computation task. Parameter DEADLINE specifies the absolute I
time when computation should cease. The computation task is 3
initialized with the value of parameter INPUT. Lastly, the

final result of the computation, whether precise or impre-

cise, is received via the parameter FINALRESULT.

Procedure IMPRETURN is called by the computation task in I
order to return an imprecise result and its associated error

I
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3 indicator. The first two parameters, INTKRKZDIATKRCSULT and

KRROR_INDICATOR, carry the imprecise result and error

I indicator from the computation task to the asynchronous

imprecise computation mechanism. Unlike the INPRETURH in the

synchronous version, this IMPRZTURN contains a third para-

m meter. The parameter STOPFLAG functions as a two-way

communication flag between the computation task and the

I asynchronous imprecise computation mechanism. If the

computation task achieves a precise result, it issues an

IMPRETURN call with STOP_FLAG set to "true*. If the deadline

3 has occurred, the computation task is signalled to stop via

STOP FLAG when the next IMPRETURN call Is issued. In this

3 way, the asynchronous imprecise computation mechanism does

not have to explicitly stop the computation task. It merely

sets a flag which is communicated to the task when the task

3 makes its next IMPRETURN call. The package body contains the

code that implements these mechanisms.

3 In addition to the procedure bodies for IMPCALL and

IMPRESULT, the ASYNCHRONOUS_IMPRECISECOMPUTATION package

body contains other variables and a task. These entities are

3 not visible to the user of the package. They are only

visible within the package body itself [231. This package

3 body, because It embodies the Implementation of a concept, Is

quite different from the synchronous version. The following

I variables are included in the package body:

3 CURRENTYALUE : RESULT-TYPE;

I
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CURRENT ERROR_INDICATOR : ERROR_INDICATORTYPE; 5
STOP_CO-PUTATIONFLAG : boolean :- FALSE;

The variables CURRENTVALUE and CURRENTERRORINDICATOR hold 1
the last imprecise result and error indicator sent by the I
IMPRETURN call. These variables are updated by the procedure

INPRETURN in the course of computation or the procedure 3
HANDLE when the deadline has expired. The variable

STOPCOMPUTATION_FLAG is a boolean flag that holds the I
current state of the computation. The flag is initially set

to "false", so the computation is not to be stopped. The

flag will be set to "true" when the deadline expires ox when 3
the computation task achieves a precise result. If the

deadline expires, the flag is set by the asynchronous I
imprecise computation mechanism. If a precise result is

achieved, the flag is set during a call to procedure

IMPRETURN. A local task is also contained in the package

body of ASYNCHRONOUS_IMPRECISE_.COMPUTATION.

While the computation task is iterating towards a 1
precise result, it is necessary to have another task moni-

toring the system time as the deadline approaches. This

monitor has been implemented as a task because it requires 3
the use of task priorities. If this monitor were implemented

as a called procedure, it could not be assigned a priority 3
[23). During the period of imprecise computation, there are

two tasks in the application executing. The computation task 1
is computing imprecise results while the monitor task is 3

I
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3 check!hq the deadline and then delaying. It Is necessary for

the monitor task to have a higher priority so that when the

Ideadline occurs# the monitor task gets iindiate control of
3 the processor. The monitor task in the package body of

ASYNCHRONOUS_IMPRCISECOMPUTATION has the following task

I specification:

task TIMER is
pragm PRIORITY(7);
entry RUNJOB(THE3_OB : in out COMPUTATION PTR;

INPUT : in INPUTTYPE;

end TIMER; DEADLINE : in CALENDAR.TIME);

IThe monitor task has been called task TIMER to reflect its
function. The first statement of the specification sets the

task priority to 7, the highest priority allowed by the VADS

5software used for development (241. It is imperative that

the user include the following statement in the computation

Itask:

3pragma PRIORITY(O);
This will ensure that task TIMER can gain control of the

priority-driven processor.

ITask TIMER contains a single entry point called RUN-JOB.
This entry point is called from procedure IMPCALL when it

wants a particular computation task executed as an imprecise

3computation. Entry point RUNJOB receives three parameters
from procedure IMPCALL during the rendezvous. The parameter

3THSEOB is a pointer to a computation task. The computation

1
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task Is initialized with the information stored In INPUT.

The parameter DEADLINE informs task TIMER of the point In

time when a result is expected. The backbone of the asyn- I
chronous approach to Imprecise computation is the body of 1
task TIMER.

The task body of task TIMER from the package body of

ASYNCHRONOUSIMPRECISECOMPUTATIONS has been implemented in

the following manner: I

task body TIMER is

COMPUTATIONCOMPLETED : boolean;
TIME_"ACK : CALENDAR.TIME;
TIMELEFT : float;
DELAY_TIME : DURATION;

begin _

accept RUN_JOB(THEJOB : in out COMPUTATIONPTR;
INPUT : in INPUT_TYPE;
DEADLINE : in CALENDAR.TIME) do

STARTCOMPUTATION(THEJOB, INPUT);
loop

TIMEHACK :- CALENDAR.CLOCK;
TIMELEFT := float(CALENDAR."-"(DEADLINE,

TIMEHACK));
DELAY TIME :- DURAT.COk(Tin LirT / 2.0);
if DELAYTIME < DURATION'SMALL AND THEN
DELAY-TIME > 0.0 then
DELAYTIME := 0.0;

end if;
if DELAYTIME > 0.0 then

delay DELAYTIME;else
STOP_COMPUTATIONFLAG 

:= TRUE;
HANDLE ( CURRENTVALUE,

CURRENT_ERRORINDICATOR);
end If;
exit when STOPCOMPUTAT ION .yLAG;

end loop;
end RUN-JOB;

end TIMER;

The body of task TIMER is basically one rendezvous. Proce- I
I
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dure IMPCALL calls the RUN-JOB entry point of task TIMER when

an asynchronous imprecise computation task is to be run.

Task TIMER then initializes and starts the computation task

by calling the generic procedure STARTCOMPUTATION. After

entering the main loop, the system clock is sampled and

compared to the deadline. The time remaining is used to

compute a delay amount. Task TIMER will suspend itself via

the "delay" statement if sufficient time remains before

deadline. If the deadline has expired, the flag

STOPCOMPUTATIONFLAG will be set so that during the next

IMPRETURN call the computation task will terminate itself.

The generic procedure HANDLE will then be called and the loop

exited. If the computation task achieves a precise result

and subsequently signals via the procedure IMPRETURN, the

flag STOPCOMPUTATIONJFLAG will be set and the loop exited.

When the loop is exited, the rendezvous completes, task TIMER

terminates, and the final result is left stored in the

variable CURRENTVALUE.

Note that the variable DELAYTIME is assigned a duration

value that is only one-half of the time remaining before the

deadline. This heuristic is necessary because of an anomaly

with the "delay" statement. The statement

delay 1.0;

suspends the task for at least one second. However, there is

no guarantee on the upper bound of the delay. While task

I
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TIMER is delaying itself, the computation task has control of 3
the processor. When TIMER's delay is complete, task TIMER Is

ready to be run again. Because TIMER was given a higher I
priority than the computation task, task TIMER should gain

control of the processor. However, the scheduler only checks

the list of ready tasks at a specified frequency. VADB 3
checks at one second Intervals (241. This time slice is much

too large for real-time systems. Digital Equipment Corpor- 3
ation's (DEC) VAX Ada provides the statement

pragma TIMRSLICI(static expression);

where staticexpression is a duration amount in seconds (MI.

The DEC manual 1o1 points out that the amount of schedulinI

overhead needed to support round-robin task scheduling

increases as the value of a time slice decreases. The I
minimum reconmended tim slice is 0.01 seconds. A test was

constructed to evaluate this feature and the effects of

background tasks on the delay statement.

In order to determine the effect of background tasks on

the delay statement, the procedures DZLAY_TST and I
DELAY-TRSTNOTASK were designed. These procedures were run3

on a VADS computer system and then augmented with

pragma TIMESLICE(0.01 or 1.00); I

and run on DEC Ada machine to investigate the best perfor-I

mance (0.01) and to compare the DEC Ada run-time system with3
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the VAD8 run-time system (1.00). The procedure

DBLAY_T T_NO_TA K was constructed In the following way:I
with CALENDAR; use CALENDAR;
with TIBXTO; use TZXTYIO;
with 1LOAT_1O; use FLOAT_0;
procedure DELAYTIUT_SOTASK Is

HACXI, HACX2 : time;
TOTAL : float :- 0.0;

beg in
for COUNT In I .. 100 loop

MACKI :a clock;
delay 1.0;
KACX2 :- clock;
TOTAL :- TOTAL + float(HACX2 - HACK1);
put(OTime difference for 1 second delay=>*);
put(float(HACK2 - HACKI));
put_line(O scs.0);

end loop;
new in.(3);
put("AVERAGR DELAY VAS -> ");
put(TOTAL / 100.0);
put_line(" secs.);

end DCLAYTR8TNO_.TAK;

This procedure merely samples the system clock before and

after a one-second delay statement. The actual delay Is

averaged over 100 delay statements. The procedure DELAYTEST

includes a background task:I
with CALENDAR; use CALENDAR;
with TEXT_10; use TEXTJO;
with FLOAT_10; use FLOAT IO;
procedure DELAYTEST is

Spragma PRIORITY(7);

HACKi, HACK2 : time;5 TOTAL : float := 0.0;

task EAT is
pragma PRIORITY(0);
entry STOP;

I
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end EAT;
task body RAT is

COUNT : integer :- 0;
FINISHED : boolean := false;

begin I
loop

select
accept STOP do

FINISHED :- true;
end STOP;elsei
COUNT :- COUNT + 1;

end select;
exit when FINISHED;

end loop; i
end EAT;

begin
for COUNT in 1 .. 100 loop

HACK1 :- clock;
delay 1.0;
HACK2 :- clock;
TOTAL := TOTAL + float(HACK2 - HACK1);
put("Time difference for 1 second delay->");
put(float(HACK2 - HACK1));
putline(" secs.");

end loop;
AT.STOP;
new_line(3);
put("AVERAGE DELAY WAS -> ");
put(TOTAL / 100.0);
put-lLne(O secs."); i

end DELAY_TEST;

Note that the task EAT has a lower priority, thus simulating i
the asynchronous imprecise computation task. Both of these

procedures were run on a VAX-11/780 under VADS, a VAX-11/780

under DEC VAX Ada, and a VAX 8700 under DEC VAX Ada. 3
Additionally, the DEC VAX Ada tests Incorporated the time

slice pragma. The average delays, In seconds, for a one I
second delay statement are summarized In Table 1. The VERDIX 3
system did not perform well In comparison to the DEC confLg-

urations. Even with TIMESLICE set to one second in an

I
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CONFIGURATION ALN

5VAX Ada
TIME..SLIC( 1.00)

Average 1.00995(8700) 1.00995(8700)U 1.01796(11/780) 1.00995(11/780)

Standard 0.0(8700) 0.0(8700)
Deviation 0.01866(11/780) 0.0(11/780)

Variance 0.0(8700) 0.0(8700)
0.00035(11/780) 0.0(11/780)I

VAX Ada
TIHNSLICZ(0.01)

Average 1.00995(8700) 1.00995(8700)
1.01676(11/780) 1.01005(11/780)

Standard 0.0(8700) 0.0(8700)
Deviation 0.00469(11/780) 0.001(11/780)

Variance 0.0(8700) 0.0(8700)
0.00002(11/780) 0.000001(11/780)

VERDIX Ada
Development System

Average 1.84434(11/780) 1.27862(11/780)

I Standard 1.13453(11/780) 0.23124(11/780)
Deviation

Variance 1.28716(11/780) 0.05347(11/780)

Table 1. Comparison of Configurations
and Task/No Task Option

I effort to mimic the VADS inherent time slice the DEC Ada run-

time system clearly performed better.

It is apparent that some Ada run-time systems are better

Sgeared for real-time applications. A serious real-time

designer would not implement his hardi real-time system in an

I Ada development system such as VADS. In proving the via-

I
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bility of the package ASYNCHRONOU8_IPRECISECOPUTATION, it

became obvious that the testing would have to be accomplished

within the realm of a genuine, real-time Ada development

system. The package body however still contains standard Ada

code.

The procedure body for procedure IMPCALL in the package 3
body of ASYNCHRONOUS_IMPRECISECOMPUTATION is implemented in

the following manner: 3
procedure IMPCALL(THECOMPUTATION : in out

COMPUTATIONPTR;
DEADLINE : in

CALENDAR. TIME;
INPUT : in

INPUTTYPE;
FINALRESULT : out

RESULTTYPE) in

beg in
TIMER. RUNJOB ( THECOMPUTATI ON,

INPUT,
DEADLINE);

FINALRESULT :- CURRENTVALUE;
end IMPCALL;

Procedure IMPCALL first calls the RUNJOB entry point of task

TIMER, passing it a pointer to the computation task to run,

the initialization input, and the deadline. Procedure

IMPCALL remains in the rendezvous with task TIMER until a f
final result is produced. Remember, when task TIMER ter-

minates, the final result is left in the variable

CURRENT_VALUE. Procedure IMPCALL copies the final result

into its output variable FINAL RESULT and then completes. I
The body of procedure IMPRETURN is implemented in the 3

a
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5 package body of A8YNCHROMOUS_IMPRECISCOMPUTATION in the

following way:I
procedure IMPRZTURN( INTERMEDIATBRESULT : in

R&SULTTYPE;
RRRORjNDICATOR : In

BRROR_I NDI CATOR TYPR;
STOP FLAG : in out

boolean) is

begin
If not STOP_COMPUTATIONJLAG then

CURRENT.VALUE : = INTERMEDIATERSULT;
CURRENTJRRORINDICATOR:- ERROR_INDICATOR;

end if;
if not STOP_FLAG then

s8TOP_FLAG : - 8TOPCOMPUTATIONJLAG;

ene STOPCOMPUTATIONFLAG :- STOPJLAG;
end If;

end IMPRETURN;

The first action IMPRETURN takes is checking the state of the

flag variable STOPCOMPUTATIONJLAG that is local to the

package body. If this flag has not been set by task TIMER,

i then the deadline has not occurred and the computation task

I should continue. The local variables CURRENTVALUE and

CURRENT_ERROR_INDICATOR are updated accordingly. If the flag

5has been set by task TIMER, then the deadline has occurred
and no further updates to CURRENT_VALUE and

I CURRENTERROR_INDICATOR are required. If the Incoming

parameter STOPYLAG is false, then the IMPRETURN call is

merely returning an imprecise result and its error Indicator.

Parameter STOPFLAG is set to the state of

STOPCOMPUTATION FLAG so that the computation task is

Iinformed when a deadline passes. If the parameter STOP_FLAG

£
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is true, then the computation task is signalling that the

computation task has completed. STOP COMPUTATIONFLAG is set

to true which in turn signals task TIMER to terminate. I
The complete package specification and package body for

ASYNCHRONOUS_IMPRCIS8_ECOPUTATION can be found in Appendix

B. Figure 2 presents the asynchronous imprecise computation 3
mechanism in a graphical manner, using the symbols outlined

in 153. This approach to imprecise computations has been

implemented in standard Ada code and should compile on any

validated compiler. However, this approach requires an

adequate run-time system to perform correctly. Actual 3
imprecise computation examples using this package are given

in the following section. 1
I

I

I

I

I
I
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3 Figure 2. Asynchronous imprecise Computation
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4 Imprecise Computation Examples I
The examples in this section demonstrate how the generic

packages SYNCHRONOUS_IMPRBCISE. COMPUTATION and I
ASYNCHROMOUSIMPRECISECOMPUTATION are used to construct

imprecise computation applications.

U
4.1 Monte Carlo Simulation

The Monte Carlo method caw be used to simulate a myriad 3
of problem. Theoretical examples include the solution of

partial differential equations, the evaluation of multiple

integrals, and the study of particle diffusion (9]. Practi- 3
cal examples include the simulation of industrial and

economic problem, the simulation of biomedical system, and 3
the simulation of war strategies and tactics (171. The Monte

Carlo method is based on the general idea of using sampling

to estimate a desired result (17).

The area of a circle can be computed by the Monte Carlo

method (171. The idea is to construct a square about the

circle such that the square encloses and is tangent to the

circle. Accordingly, the square has sides equal in length to I
the diameter of the circle. Then, random coordinate pairs

are generated that are within the square. Each coordinate

pair is tested to determine if it is within the circle. The 5
total number of coordinate pairs generated are counted and

divided into the number of coordinate pairs that fell within I
the boundary of the circle. This fraction is then multiplied 3

3)
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3 by the area of the square to yield an estimate of th" area of

the circle.

This Monte Carlo method of determining the area of a

i circle has been used to create synchronous and asynchronous

imprecise computation examples. The use of the generic

5 packages SYNCHRONOUS_IMPRBCISE.COMPUTATION and

ASYNCHRONOUSIMPRZCISECOMPUTATION is clearly demonstrated,

3along with the necessary user-written code.

54.1.1 Synchronous Circle Imprecise Computation

3The first file constructed contains the data types,
computation task type, and procedure declarations that will

be used to instantiate SYNCHRONOUS_IMPRECISB_COMPUTATION.

Because this file contains related types and procedures, It

is fashioned as a package specification. Its package body

5will contain the task and procedure bodies. The package
specification for SYNCHRONOUS_CIRCLECOMPUTATION Includes the

Ifollowing declarations:
5 subtype RESULTTYPE is float;

subtype ERROR_TYPE is Integer;

I type INPUT_TYPE Is record
LOOPS TOCOMPLETE : integer;
RADIUS : float;

end record;

task type TEST TASK is
entry INITIALIZE(INPUT : In INPUTTYPE);
entry COMPUTE(COMPUTATIONCOMPLETE :out boolean);
entry HANDLER(1 .. 2)(LAST_RESULT:in RESULTTYPH;

LASTERROR :in ERRORTYPE);
entry STOP;

I
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end TEST-TASK; 3
type TESTPTR Is access TESTTASK;

procedure INITIALIZE(THETASK : in TESTPTR; I
INPUT. : in INPUTTYPE);

procedure COMPUT(THETASK : in TESTPTR;
COMPUTATIONCOMPLETE :out boolean);

procedure HANDLE(THE TASK :in TEST PTR;
HANDLERNUMBER :in integer;
LASTYALUE :in RESULTTYPE;
LASTERROR_INDICATOR:in ERRORTYPE); 3

procedure STOP(THETASK : in TESTyPTR);

The result of the computation will be a floating point value I
representing an estimate ot the area of a circle, so 3
RESULTTYPE is made a subtype of float. To monitor the

precision of the imprecise result, a counter will count the

number of random coordinate pairs generated. Therefore,

ERRORTYPE Is created as a subtype of integer. At initiali- U
zation, the computation task will need two pieces of Informa-

tion. Represented by the elements in type INPUTTYPE, this

information is the number of random coordinate pairs to

generate before a precise result Is achieved, and the radius

of the circle. The task type TEST_TASK is the computation I
task. It Includes the necessary entry points to initialize

the task, cause one iteration, handle an imprecise result,

and stop the task. Note that entry HANDLER has been imple- 4
mented as a family of entries. The type TEST_PWR is a

pointer to task type TESTTASK. The four procedures

INITIALIZE, COMPUTE, HANDLE, and STOP are required to allow 3
I
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5 the imprecise computation mechanism, which has no prior

knowledge of the computation task typeo to call specific

I entry points within the computation task. When this package

Ispecification is compiled, it is entered into the user's Ada

library where it can be further referenced.

Now that the required data types, task type, and

procedures have been declared, an Lnstantiation of the

i generic package SYNCHRONOUS_IMPRECISECOMPUTATION can be

made. The declarations in the package specification of

SYNCHRONOUS_CIRCLEC._OMPUTATION will be used to create the

package SYNCHRONOUSCIRCLEIMPRECISECOMPUTATION in the

following manner:

w
with SYNCHRONOUS_CIRCLE_COMPUTATION;i use SYNCHRONOUS_CIRCLZCOMPUTATI ON;

with SYNCHRONOUS_IMPRECISECOMPUTATION;
package SYNCHRONOUSCIRCLE_IMPRECISECOMPUTATIOh is

new SYNCHRONOUSIMPRECISECOMPUTATION
(COMPUTATION -> TESTTASK,
COMPUTATIONPTR -> TESTPTR,
RESULTTYPE => RESULTTYPE,
ERRORINDICATOR_TYPE => ERROR-TYPE.
INPUT_TYPE a> INPUT-TYPE,
INITIALIZE => INITIALIZE,
COMPUTE => COMPUTE,

HANDLE => HANDLE,
STOP => STOP);

I When this file is compiled, a new synchronous Imprecise

computation package is created that includes the declarations

In SYNCHRONOUSCIRCLECOMPUTATION's package specification.

The next file to compose and compile is the package body.

The new imprecise computation package Is Instantiated before

5 the computation package body is compiled for a crucial

!
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reason. 5
The imprecise computation mechanism employs a circular

calling pgttern. Procedure IMPCALL calls procedures that 3
call entry points of the computation task. In the meantime, I
the computation task is calling procedure IMPRETURM with

imprecise results and error indicators. Wher the new package 5
is instantiated after the declarations are made in the

computation package specification, the new IMPCALL is I
supplied with the procedure declarations it needs to get its

Job done. The implementation, or body of these procedures is

of no consequence to IMPCALL. After instantiation, a valid

IMPRETURN exists in the new imprecise computation package.

At this point, the computation task body which relies on 5
IMPRETURN can be coded. In this way, a single package can I
house the synchronous imprecise computation mechanism, even

though circular calling exists. 5
The package body for SYNCHRONOUSCIRCLEOMPUTATION

contains the following procedure bodies! I

procedure INITIALIZE(THE_TASK : in TEST PTR;
INPUT : In INPUTTYPE) is

begin
THETASK.INITIALIZE(INPUT);

end INITIALIZE;

procedure COMPUTE(THE_TASK : in TESTPTR;
COMPUTATION_.COMPLETE : out

boolean) is
begin

THETASK.COMPUTE(COMPUTATION_COMPLETE);
end COMPUTE;

procedure HANDLE(THETASK : in TEST-PTR;
HANDLERNUMBER : in integer;

!
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LAST. VALUE : in RESULT TYPE;
LASTERRORINDICATOR : in ERROR_TYPE) is

begin
THETASK.HANDLER(HANDLER._UMBER)

(LASTVALUE,
LASTERRORINDICATOR);ft end HANDLE;

procedure STOP(THETASK : in TESTPTR) is
begin

THE TASK.STOP;
end STOP;

I These procedures call their respective entry points in the

3 computation task. Although the procedure names and the entry

points have exact or similar names, the names are independent

Sof the synchronous imprecise computation mechanism. The only

names it needs are the names used to instantiate

S SYNCHRONOUSCIRCLE_IMPRECISECOMPUTATION. The task body for

3 task type TEST_TASK has the following structure:

task body TESTTASK is

I... local variable declarations ...

begin
accept INITIALIZE(INPUT : in INPUTTYPE) do

lop initialize variables with input ...
end INITIALIZE;

select

accept COMPUTE(COMPUTATION COMPLETE : out
boolean) do

. generate random coord pairs
check circle boundary ...

... compute area ...

... check if precise,
set COMPUTATION-COMPLETE .....IMPRETURN ...

end COMPUTE;I Or
accept HANDLER(1)(LASTRESULT : in

RESULT-TYPE;
LAST-ERROR : in

I
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handler 11 code ...ERROR-TYPE) do!

IMPRETURN ...
end HANDLER;

accept HANDLER(2)(LASTRESULT : In
RESULT_,TYPE;

LASTERROR : in
ERRORTYPE) do

handler 12 code
IMPRETURN ...

end HANDLER; a
or

accept STOP do
FINISHED := true; I

end STOP;
end select;
exit when FINISHED;

end loop;
end TESTTASK;

After initialization, the task continuously loops through a

select statement. The select statement causes the task to 5
wait for a call to any one of the entry points. The COMPUTE

I
entry point contains the code that implements the random

sampling of the Monte Carlo method and the area calculation 5
code. The HANDLER entry family contains the code necessary

to further manipulate the final imprecise result. The loop 3
is exited by a rendezvous with the STOP entry point. No

other entities are required in the computation package body. I
After this package body is compiled and subsequently entered

into the user's Ada library, a self-contained, operational

synchronous imprecise computation package exists and can be 3
used. The following VAX Ada program exercises the synchro-

nous package: I
with SYNCHRONOUSCIRCLECOMPUTATION; S

I
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use SYNCHRONOUSCIRCLECOMPUTATION;

with SYNCHRONOUSCIRCLEIMPRECISE_- COMPUTATION;
use SYNCHRONOUS_.CIRCLEIMPRECISECOMPUTATION;
with CALENDAR; use CALENDAR;
with TEXT_IO; use TEXT10;
with FLOAT_TEXTIO; use FLOATTEXT 10;
with INTEGERTEXT_IO; use INTEGER_TEXT_IO;
procedure SYNCHRONOUSCIRCLETEST is

MYTASKPTR : TESTPTR :- new TESTTASK;
DEAD : CALENDAR.TIME;
RESULT : RESULT TYPE;
COMP TIME : float;
MYINPUT : SYNCHRONOUS_CIRCLECOMPUTATION.

INPUTTYPE;
begin

put("Enter the circle radius => ");
get(MY_INPUT.RADIUS);
put("Enter number of iterations to complete ->");
get(MY_INPUT.LOOPSTO_COMPLETE);
put("Enter computation duration in seconds ->");
get(COMPTIME);
put_line("Synchronous CIRCLE TEST starting...");
DEAD :- CALENDAR.CLOCK + DURATION(COMPTIME);
SYNCHRONOUSCIRCLE_IMPRECISECOMPUTATION.

IMPCALL(MYTASKPTR,
1,
DEAD,
MY_INPUT,
RESULT);

put("TEST ending... RESULT -> ");
put(RESULT, EXP -> 0, AFT -> 2);
newl ine;

end SYNCHRONOUSCIRCLETEST;

Once the computation package is built and compiled correctly,

using it is quite simple. After the input parameters are

t determined, the imprecise computation is run by merely

invoking the IMPCALL procedure in the newly Instantiated

3 SYNCHRONOUSCIRCLEIMPRECISECOMPUTATION package. The

complete file listings for this example are located in

I Appendix C.3
I
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4.1.2 Asynchronous Circle Imprecise Computation

A similar sequence of files Is used to build an asyn-

chronous imprecise computation application because the i
asynchronous approach also relies on a circular calling

mechanism. The first file constructed contains data types,

task type, and procedure declarations required for instantia-

tion of generic package ASYNCHRONOUSlIPRECISEBCOMPUTATION.

These declarations are located in the package specification

for ASYNCHRONOUS.CIRCLECOMPUTATION in the following format:

subtype RESULTTYPE is float;

subtype ERRORTYPE is Integer; I
type INPUT_TYPE is record

LOOPSTO.COMPLETE : integer;
RADIUS : float;end record;

task type TEST TASK Is 
pragma PRIORITY(0);
entry STARTCOMPUTATION(INPUT : in INPUTTYPE);

end TESTTASK;

type TEST..PTR is access TEST_TASK;

procedure START_COMPUTATION(THE TASK :in TEST_PTR;
INPUT :in INPUT_TYPE);

procedure HAD[,E(LASTVALUE : in out n
RESULTTYPE;

LASTERRORINDICATOR : in out
ERRORTYPE);

The subtypes RESULTTYPE, ERRORTYPE, and INPUTTYPE are the 3
same as In the synchronous example. However, the task type

TEST_TASK is quite different. The task must contain the I
priority pragma statement with a priority lower than that of

!
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the TIMER task in ASYNCHRONOUSIMPRECISECOPUTATION. Task

type TESTTASK contains a single entry point where the task

I is initialized and then turned loose. The type TESTJTR

remains as an access type pointing to TEST_TASK. The

procedure START.COMPUTATION is required to allow the asyn-

chronous imprecise computation mechanism, which has no

knowledge of the internal structure of the computation task,

I to indirectly call the START COMPUTATION entry point. The

procedure HANDLE is not affiliated with the computation task

as it is in the synchronous version, but accomplishes the

same function of manipulating the final imprecise result.

The compiled ASYNCHRONOUS_CIRCLECOMPUTATION package specifL-

I cation is entered into the user's Ada library where it can be

further referenced by the application.

Once the required data types, task type, and procedures

5 have been declared, a new package can be created by instanti-

ating the generic package ASYNCHRONOUSIMPRECISECOMPUTATION.

3 This is accomplished in the following file:

with ASYNCHRONOUSCIRCLECOMPUTATION;
use ASYNCHRONOUSCIRCLECOMPUTATION;
with ASYNCHRONOUSIMPRECISECOMPUTATION;
package ASYNCHRONOUSCIRCLE_IMPrECISECOMPUTATION is

new ASYNCHRONOUSIMPRECISECOMPUTATION
(COMPUTATION "> TEST TASK,
COMPUTATIONPTR => TESTPTR,
RESULTTYPE -> RESULTTYPE,
ERRORINDICATORTYPE => ERROR-TYPE,
INPUT TYPE > INPUT TYPE,
STARTCOMPUTATION > STARTCOMPUTATION,
HANDLE > HANDLE);

I When this file is compiled, a new asynchronous imprecise

I
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computation package is created. This new package contains

the declarations from the package specification of

ASYNCHRONOUSCIRCLECOMPUTATION substituted In for the 3
generic parameters. The next step is to implement the body I
of the computation package.

The package body of ASYNCHRONOUSCIRCLECOPUTATION

contains the following procedure bodies:

procedure STARTCOMPUTATION(THE_TASK : in TESTYTR;
INPUT : in INPUTTYPE) is

begin
THETASK.START_COMPUTATION(INPUT);

end START-COMPUTATION;

procedure HANDLE(LAST_VALUE : in out 3
RESULT-TYPE;

LASTERRORINDICATOR : In out
ERROR_TYPE) is

begin

handler routine
end HANDLE;

Procedure STARTCOMPUTATION merely calls THETASK at the

START-COMPUTATION entry point. During the rendezvous, the

Initialization INPUT is passed to the compute task. Pro-

cedure HANDLE is a standalone procedure that manipulates the

final imprecise result. Also included in the computation

package body is the body of task type TESTTASK. It has the I
following structure: 3

task body TESTTASK is

... local variable declarations ... I
begin

accept STARTCOMPUTATION(INPUT :in INPUTTYPE) do
initialize local variables ...

end STARTCOMPUTATION;
delay DURATION'SHALL; I
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loo generate random coordinate pairs ...

... test boundary of circle
compute area

check if precise, set FINISHED..
IMPRETURN ...

exit when FINISHED;
end loop;

end TESTTASK;

t The purpose of the delay statement with the minimal amount of

delay is to allow the TIMER task to regain immediate control

of the processor after the rendezvous with TESTTASK. The

3delay statement causes TESTTASK to be blocked and allows the
higher priority TIMER task to execute. After the TIMER task

determines its delay amount and suspends itself, the task

TESTTASK regains control of the processor and proceeds with

the computation. The TESTTASK loop is not exited until it

achieves a precise result or is signalled to exit via the

IMPRETURN call. No other entities are required In the

Icomputation package body. After this package is compiled and

entered into the user's library, a fully operational asyn-

chronous imprecise computation mechanism is available by

1 referencing ASYNCHRONOUSCIRCLE_IMPRECISECOMPUTATION. This

new package Is used in the following VAX Ada procedure:

with ASYNCHRONOUSCIRCLECOMPUTATION;
use ASYNCHRONOUSCIRCLECOMPUTATION;
with ASYNCHRONOUS..CIRCLE_IMPRECISECOMPUTATION;
use ASYNCHRONOUSCIRCLEIMPRECISE_COMPUTATION;
with CALENDAR; use CALENDAR;
with TEXT_IO; use TEXT_IO;
with FLOATTEXT_1O; use FLOAT TEXTIO;
with INTEGERTEXT_1O; use INTEGER_TEXT_10;
procedure ASYNCHRONOUSCIRCLETEST is

I
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pragma TIMESLICS(O.Ol);

MY_TASK_PTR : TSTPTR -nw TZSTTASK;
DEAD : CALENDAR.TIME;
RESULT : RESULT TYPE;
COKPTIME : float;
MY_NPUT : ASYNCHRONOUSCIRCLE_COMPUTATION.INPUT_TYPE;

begin (NPUTfA IU )

put("Enter the circle radius => ");get (MY_INPUT .RADIUS) ;

put("Enter number of Iterations to complete >");

get(MY_INPUT.LOOPSTOCOMPLETE);
put("Enter computation duration in seconds -> ");
get(COMPffTIME); I
put line( "Asynchronous CIRCLE TEST starting...");
DEAD :- CALENDAR.CLOCK + DURATION(COMPTIME);
ASYNCHRONOUSCIRCLE_IPRECI SECOMPUTATI ON.

IMPCALL ( KYTASKPTR,
DEAD,
MYINPUT,
RESULT); I

put("CIRCLE TEST ending...CIRCLE AREA RESULT=>");
put(RESULT, EXP -> 0, AFT -> 2); new-lLne;

end ASYNCHRONOUSC1 RCLETEST; I
Like Its synchronous version, the asynchronous imprecise

computation package is quite easy to use. Once compiled

correctly, It can be accessed by simply invoking IMPCALL with 5
the necessary parameters. A complete listing of the example

files for asynchronously computing the area of a circle can

be found in Appendix D.

4.2 Iterative Numerical Methods

Iterative numerical methods involve the repeated

application of an operator. These methods include Newton's

method (nonlinear equations), the Jacobi method (linear

equations), and the Newton divided-difference method (infi-

nite series approximation) among others (15,16). This i

I
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example demonstrates another use of the synchronous and

asynchronous approaches In implementing an imprecise computa-

tion application. SYNCHRONOUS_IMPRECISECOMPUTATION and

ASYNCHRONOUSJMPRECISECOMPUTATION are generic packages used

to implement a synchronous and an asynchronous linear system

* of equations solver that utilizes the Jacobi method.

1 4.2.1 Synchronous Jacobi Imprecise Computation

3 The sequence of file generation and compilation is

identical to the previous example. The first file generated

B is the package specification. This file contains the data

types, taak type, and procedure declarations that will be

ft used to instantiate a custom synchronous imprecise computa-

tLon package. The following declarations are used for the

Jacobi method:

I N : constant integer := 3;

p type RESULT_TYPE is array(l .. N) of float;

subtype ERRORTYPE is integer;

3 type COEFFICIENT_TYPE is array(l .. N, 1 .. N) of float;

type INPUT_TYPE is record
COEFFICIENTS : COEFFICIENTTYPE;
RIGHTHANDSIDE : RESULTTYPE;
XOLD : RESULT_TYPE;
TOL : float;

end record;

task type TESTTASK is
entry INITIALIZE(INPUT : In INPUTTYPE);
entry COMPUTE(COMPUTATIONCOMPLETE :out boolean);
entry HANDLER(1 .. 2)(LAST_RESULT:in RESULT-TYPE;

LASTERROR :in ERRORTYPE);
entry STOP;

£
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end TESTTASK;

type TEST_PTR Is access TEST_TASK;

procedure INITIALIZE(THE_TASK : in TESTJPTR; I
INPUT : in INPUT_TYPE);

procedure COMPUTE(THETASK : in TESTPTR;
COMPUTATION_COMPLETE : out boolean);

procedure HANDLE(THETASK : in TESTPTR;
HANDLER_NUMBER : in integer;
LAST_VALUE : in RESULTTYPE;
LAST_ERRORINDICATOR : in ERRORTYPE);

procedure STOP(THE_.TASK : in TESTPTR);

The integer constant N represents the number of equations in I
the linear system. Likewise, N also represents the number of

coefficients in each equation. The type RESULT_TYPE indi-

cates that a solution vector with N floating point components

will be the result of the computation. The subtype

ERROR TYPE is defined as an integer, for the error will be

represented by an integer counter indicating the number of

iterations accomplished. The type COEFFICIENT-TYPE defines

an N by N matrix of floating point values. This type is not 3
directly used in instantiation, but Is used in the definition

of the input to the computation. Type INPUTTYPE is a record

type containing 4 fields. The field COEFFICIENTS is an N by 5
N matrix containing the coefficients of the equations in the

linear system. The right hand side of these equations is 3
stored in the field RIGHT_HAND SIDE. The field XOLD contains

an initial guess at the solution vector. This gives the 1
Jacobi method a place to start. The field TOL is the 3

I
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5 tolerance used to determine whether a new solution vector,

when compared to the previous one, can be considered a

precise result. The task type TESTTASK contains the

3 appropriate entry calls required by the synchronous imprecise

computation mechanism to initialize the task, cause an

3 iteration of the computation, handle an imprecise result, and

stop the task. A pointer type to this task type is defined

I as type TESTPTR. Finally, the procedures INITIALIZE,

3 COMPUTE, HANDLE, and STOP are declared so that the synchro-

nous imprecise computation mechanism, when instantiated with

It these declarations, can call the entry points of a task.

These procedures are necessary because the synchronous

£ mechanism has no prior knowledge of the task TESTTASK or its

3 structure. Cnce this package specification is compiled, it

is entered into the user's Ada library where it can be

3 further referenced by the application.

With the data types, task type, and procedures declared

U in the package specification, an instantiation of the generic

package SYNCHRONOUSIMPRECISE_COMPUTATION can be made. The

declarations in the SYNCHRONOUSJACOBICOMPUTATION package

3specification are used to create the new package
SYNCHRONOUSJACOBIIMPRECISECOMPUTATION in the following

fway:

with SYNCHRONOUSJACOBICOMPUTATION;
use SYNCHRONOUSJACOBICOMPUTATION;
with SYNCHRONOUS IMPRECISE COMPUTATION;
package SYNCHRONOUSJACOBIIMPRECISECOPUTATION Is

new SYNCHRONOUSIMPRECISE_COMPUTATION

I



(COMPUTATION => TESTTASK,
COMPUTATIONPTR -> TESTPTR,
RESULTTYPE => RESULTTYPE,
ERROR INDICATORTYPE => ERROR TYPE, i
INPUTTYPE -> INPUT TYPE, 1
INITIALIZE => INITIALIZE,
COMPUTE => COMPUTE,
HANDLE => HANDLE, I
STOP => STOP);

After this file is compiled, a new synchronous imprecise I
computation package exists In the user's library. This new

package contains the same mechanism, but with the new

declarations substituted in for the generic parameters. The 3
next file defines the bodies for the task type and the

procedures declared in the package specification. i
The package body of SYNCHRONOUSJACOBICOMPUTATION

contains the implementation details of the task type and

procedure bodies. The procedure bodies are implemented in

the following way:

procedure INITIALIZE(THE TASK : in TESTPTR;
INPUT : in INPUTTYPE) is

begin
THETASK.INITIALIZE(INPUT);

end INITIALIZE;

procedure COMPUTE(THE_TASK : in TESTPTR; I
COMPUTATIONCOMPLETE : out boolean) is

beg in
THE_TASK. COMPUTE (COMPUTATION_COMPLETE);

end COMPUTE;

procedure HANDLE(THE_TASK :in TESTPTR; 3
HANDLERNUMBER :in integer;
LASTVALUE :in RESULTTYPE;
LAST_ERROR INDICATOR:in ERRORTYPE) is

begin__1
THETASK.HANDLER(HANDLERNUMBER)

(LASTVALUE, LAST_RRORINDICATOR);
end HANDLE; I

nI
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5 procedure STOP(THE_TASK : In TESTPTR) is
begin

TH_.TASK.STOP;
end STOP;

These procedures call their respective entry points in the

Jacobi computation task. The procedures and entry points can

3have any names. The only requirement is that the procedures

used to instantiate the new synchronous imprecise computation

Ipackage call the appropriate entry point In the Jacobi

3 computation task. The task body for task type TEST-TASK has

the following structure:

i task body TEST_TASK is

. ... local variable declarations

begin
accept INITIALIZE(INPUT : in INPUTTYPE) do

initialize local variables with input
end normalize coefficient matrix...end INITIALIZE;

loop select

accept COMPUTE(COMPUTATIONCOMPLETE :
out boolean) do

... compute new solution vector
using method in [15,161
find absolute difference
between old and new elements..
let present estimate be
improved estimate ...
report current result
with IMPRETURN ...

end COMPUTE;
or

i accept HANDLER(1)
(LAST RESULT : in RESULTTYPE;
LASTERROR : in ERRORTYPE) do
handler 01 code
IMPRETURN...

end HANDLER;
or

accept HANDLER(2)IO
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(LAST..RESULT : in RESULTTYPE; 5
LABT3RROR : in ERROR_TYPE) do
handler 12 code
IMPRI/TURN

end HANDLER;
or

accept STOP do
FINISHED :- true; I

end STOP;
end select;
exit when FINISHED;

end loop;
end TESTTASK;

During initialization, the values of the input record are

copied to local variables. The input record fields cannot be

used directly in the computation task because their scope is

limited to the INITIALIZE rendezvous. The coefficient matrix

is then normalized and the rendezvous Is complete. The task 5
then enters a loop that contains a select and an exit

statement. The task waits for an entry call, performs the

operation in the rendezvous, and then checks if it should

exit the loop. The COMPUTE entry point contains the imple- 1

mentation of the Jacobi method as specified in (15,16). The I

HANDLER entry family contains the code necessary to further

manipulate the final imprecise result. The STOP entry point

sets the flag that triggers the loop exit. No other entities

are required in the SYNCHRONOUSJACOBICOMPUTATION package 1
body. After this package body is compiled and entered into £
the user's Ada library, a self-contained synchronous impre-

cise Jacobi computation mechanism exists. Real-time programs 1
in need of an imprecise Jacobi computation package can call

SYNCHRONOUSJACOBIIMPRECISECOMPUTATION in the following 9
I
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3 manner:

with SYNCHRONOUSJACOBICOMPUTATION;I use SYNCHRONOUSJACOBI COHPUTATION;
with SYNCHRONOU8.JACOBI 3 KPRECI SECOMPUTATI ON;
use SYNCHRONOUS JACOBI IMPRECISE COMPUTATION;
with CALENDAR; use CALENDAR;
with TEXTJO; use TEXT_10;

with FLOATTEXTJO; Use FLOATTEXT3O;
with INTEGERTEXT10; use INTEGERTEXT_10;I
procedure SYNCHRONOUSJACOBITEST is

MY..TASK.~TR : TEST.PTR : - nev TESTTASK;I DEAD : CALZNDAR.TIME;
RESULT : RESULT TYPE;
COMPTIME : FLOAT;I
INPUT : INPUTTYPE;begin
for INDEX in 1 *. N loop

putline("Enter the coefficients and " &I "right hand side for equation " &
integer' image( INDEX));

tar NUMCOEFF in 1 .. N loop
get(INPUT.COEFFICIENTS(INDEXNWICOEFF));£ end end loop;

get(INPUT.RIGKTHANDSIDE(INDEX));5 loop;
for INDEX in 1 .. N loop

INPUT.XOLD(INDEX) :- 0.0;
end loop;I put("Enter tolerance factor -> ");
get( INPUT.TOL);
put("Enter the computation duration~secs.) -> ");5 get (COMPTIHE);put....line("Synchronous Jacobi test starting...");
DEAD : CALENDAR.CLOCK + DURATION(COKPJIME);
SYNCHRONOUSJACOBIIMPRECISECOMPUTATION.1

IMPCALL(MYTASKPTR,
1,
DEAD,£ INPUT,
RESULT);

put.line("Jacobi TEST ending... ");I for INDEX in 1 .. N loopput("X"); put(INDEXVIDTK *> 1); put(" -> ");
put(RESULT(INDEX), EXP '> 0);
newl me;I _ _end loop;

end SYNCHRONOUSJACOBITEST;

U
I



After the synchronous imprecise Jacobi comqputation mechanismI

is built, using it is quite simple. After the input vari-

ables are determineds a single IMPCALL- runs the entire I
imprecise computation. The complete file listings for this

example, including the implementation of the Jacobi method,

are located in Appendix 3. 3

4.2.2 Asynchronous Jacobi Imprecise Computation 9
The sequence of files is again the same because of the

circular calling mechanism employed. The package specifi- 1

cation for the asynchronous computation looks like this: 1

N : constant integer := 3; 3
type RESULT_TYPE is array (1 .. N) of float;

subtype ERRORTYPE is integer; 1

type COEFFICIENT TYPE is array(1 .. NI, 1 .. N) of float;

type INPUT_TYPE is record I
COEFFICIENTS : COEFFICIENT_TYPE;
RIGHT_HAND_SIDE : RESULT_TYPE;l
XOLD :RESULT_TYPE;
TeL :flIoat;

end record;

task type TEST TASK is I
pragma PRIORITY(0) ;
entry START_COKPUTATION( INPUT : in INPUTTYPE) ;

end TEST_TASK;

type TEST_PTR is access TEST_TASK;
procedure STARTCOHPUTATION(THE_TASKINU : in TESTPTR;IUTTE)lI

procedure KANDLE(LAST_VALUE : in out U
RESULT_TYPE;LSR ONIAOR :inout!I
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3 The integer constant N represents the number of equations in

the linear system. The type RESULTTYPE represents the form

of the final result which will be a solution vector with N

3 elements. Type ERRORTYPE will again be an integer count of

the number of iterations. The type COEFICIINTTYPE will not

3be used directly for instantLation, but represents an N by N
matrix of coefficients. The type INPUTTYPE is the same as

Ithe synchronous input. The coefficient matrix COEFFICIENTS,

3 the values to the right of the equal operator

RIGHTHAND_SIDE, the initial solution guess XOLD, and the

3 tolerance TOL are passed to the computation task at initiali-

zation. The specification of task type TESTTASK contains

I the compiler directive to give a task object of this task

type the lowest possible priority. This allows the asynchro-

nous imprecise computation mechanism, operating at the

3highest priority, to gain control of the processor. Task

type TESTTASK also contains a single entry call,

5STARTCOMPUTATION. The procedure STARTCOMPUTATION is needed
to rendezvous with the computation task and initialize it.

The procedure HANDLE is a standalone procedure that manipu-

3lates the final, imprecise result.
Again, once the asynchronous computation package

3specification is compiled and entered into the user's
library, an instantiation of the generic package

IASYNCHRONOUSIMPRECISECOMPUTATION can be made using the
3 declarations from the newly construk-id package specifi-

I
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cation. This is accomplished in the following way: g
with ASYNCHRONOUSJACOBI COMPUTATION;
use ASYNCHRONOUS3JACOBI_COMPUTATION;
with ASYNCHRONOUS_I MPRECI SECOMPUTATI ON;
package ASYNCHRONOUS JACOBIIMPRECISECOMPUTATION is

new ASYNCHRONOUS_IMPRECISE COMPUTATION
(COMPUTATION ;> TEST_TASK,
COhPUTATIONPTR => TESTPTR,
RESULTTYPE => RESULT TYPE,
ERRORINDICATORTYPE => ERROR-TYPE,
INPUT-TYPE -> INPUT-TYPE,
STARTCOMPUTATION => STARTCOMPUTATION,
HANDLE => HANDLE);

The package ASYNCHRONOUSJACOBIIMPRECISECOMPUTATION is 

created from the generic template, substituting the new

declarations for the generic parameters. This new package 3
contains valid IMPCALL and IMPRETURN procedures, the latter I
needed by the computation task to return imprecise results.

At this point, the computation package body containing the 3
procedure bodies and task type body is constructed.

The package body of ASYNCHRONOUSJACOBICOMPUTATION

contains the following procedure bodies:

procedure STARTCOMPUTATION(THETASK : in TEST-PTR;
INPUT : in INPUTTYPE) is

begin I
THETASK.START_COMPUTATION(INPUT);

end STARTCOMPUTATION;

procedure HANDLE(LAST_VALUE : in out
RESULTTYPE;

LAST ERRORINDICATOR : in out
ERRORTYPE) Is 1

begin
put_line("HANDLE called ... ");
put("Computation looped ");
put(LASTERROR_INDICATOR);
put_line(" times.");

end HANDLE; I
I
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t The procedure START.COMPUTATION merely calls the entry point

STARTCOMPUTATION in THE-TASK. During the rendezvous,

I parameter INPUT is used to initialize the computation task.

5 Procedure HANDLE, in this example, merely displays the number

of iterations the computation completed. Additional state-

3ments could be included to manipulate the imprecise result
based on this number. The computation package body also

contains the body of task type TESTTASK:

Stask body TEST-TASK is

... local variable declarations ...

I begin
accept STARTCOMPUTATION(INPUT:in INPUTTYPE) do

initialize local variables with input...
end START COMPUTATION;
delay duration'small;

... normalize matrix ...
loop

iterate improvement until required
accuracy is achieved ...

compute new solution vector
using method In (15,161

find absolute difference
between old and new elements..

. let present estimate be
improved estimate ...

set finished flag if within accuracy
... report current result

with IMPRETURN ...
exit when FINISHED;

end loop;

exception
when NUMERICERROR =>

putjine("NUMERIC ERROR... " &
"Diverging solution.");

end TESTTASK;

During the STARTCOMPUTATION rendezvous, local variables are

5 assigned the values of INPUT fields. The task then delays

I
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the smallest possible amount of time. This delay allows task

TIMER to determine its Initial delay amount and then delay

itself. After the coefficient matrix is normalized, the task I
enters a loop. This loop contains the Jacobi algorithm as

specified In 115,16). If the required accuracy is achieved,

the FINISHED flag will be set. An IMPRETURN call returns the 3
current imprecise result, error indicator, and state of the

FINISHED flag. If FINISHED Is set, the loop Is exited and

the task completes. Appropriate exception handlers are set 3
up as required by the particular computation. With the

ASYNCHRONOUSJACOBI_COMPUTATION package body compiled and In 1

the user's library, the following VAX Ada procedure can use

the Imprecise Jacobi computation mechanism: 1
with ASYNCHRONOUSJACOBICOMPUTATION; I
use ASYNCHROKOUS_JACOBICOMPUTATION;
with ASYNCHRONOUS..JACOBIIMPRECISE_COMPUTATION;
use ASYNCHRONOUSJACOBI IMPRECISE COMPUTATION;
with CALENDAR; use CALENDAR;
with TEXT_IO; use TEXT_IO;
with FLOATTEXTO; use FLOAT_TEXTIO;
with INTEGERTEXT IO; use INTEGER_TEXTIO;
procedure ASYNCHRONOUSJACOBITEST is

pragma TIMESLICE(O.Ol); 3
MYTASKPTR : TESTPTR :- new TEST TASK;
DEAD : CALEtDAR.TIME;
RESULT : RESULTJTYPE;
COMPTIME : FLOAT;INPUT : INPUTTYPE;

begin
for INDEX in 1 .. N loop

put_line("Enter the coefficients and " &
"right hand side for equation " & I
Lntegerlimage(INDEX));

for NUN_COEFF in 1 .. N loop
get(INPUT.COEFFICIENTS(INDEX,NUMCOEFF)); I

I
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end loop;
get(INPUT.RIGHT_HANDSIDE(INDEX));

end loop;
for INDEX in 1 .. N loop

INPUT.XOLD(INDEX) :- 0.0;
end loop;
put("Enter tolerance factor -> ");
get(INPUT.TOL);
put("Enter the computation duration(secs) > ");
get(COMPTIME);
put_line("Asynchronous Jacobi test starting...");
DEAD := CALENDAR.CLOCK + DURATION(COMPTIME);
ASYNCHRONOUSJACOBI_IMPRECISECOMPUTATION.

IMPCALL(MY_TASKPTR,
DEAD,
INPUT,
RESULT);

put-line("Jacobi TEST ending... ");
for INDEX in 1 .. N loop

put("X"); put(INDEX,WIDTH -> 1); put(" > ");
put(RESULT(INDEX), EXP => 0);
new_line;

end loop;
end ASYNCHRONOUSJACOBITEST;

After the input variables are given their appropriate values,

I the imprecise computation is run by merely calling IMPCALL

3 and passing it the necessary parameters. When the computa-

tion completes, the final result is passed back In the

5 parameter RESULT and IMPCALL terminates. A complete listing

of the files for this asynchronous Jacobi example can be

i found in Appendix F.

4.3 Running the Examples

£ All of the preceding examples were compiled and run on a

VAX-11/780 at the 83rd Fighter Weapons Squadron's Range

5I Support Facility (RSF), Tyndall Air Force Base, Florida. The

RSF VAX runs the VMS operating system and uses the DEC Ada

I
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compiler. All test files compiled and linked correctly. The

example tests were run at a real-time priority, giving them

privilege over system processes such as the swapper and all 3
other user processes. The results of these tests are

summarized in Tables 2 through 5. Each table contains the I
duration of the imprecise computation (TIME), the number of 3
iterations completed (ITERATIONS COMPLETED), and the amount

of time the computation took past Its deadline (PAST DEAD- 6
LINE).

As expected, the asynchronous approach proved much 3
faster, almost by an order of magnitude, than the synchronous

approach in the circle test. This algorithm involves a

short, simple loop that must be repeated 10000 times to 5
produce a result considered precise. In this example, the

synchronous approach yielded more consistent and lower I
deadline expiration times. This is expected because the

synchronous approach maintains total control over the

computation loop. In the Jacobi test, solving a linear 3
system of three equations with three unknowns required only

15 iterations. This example represents the other side of the I
iteration spectrum as compared to the circle test's 10000

iterations. In addition to the synchronous approach main-

taining its lower and consistent deadline expiration times,

it also produced a precise result ahead of the asynchronous

approach. 3
I
I
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3 TIME ITERATIONS COMPLETED PAST DEADLINE(sec)

0.01 0 1.000983-02

3 0.05 1830 1.000983-02

0.10 4080 1.000983-02

0.15 5540 0.000003+00

3 0.20 8510 0.000003+00

0.25 10000 (complete) -

Table 2. Asynchronous Circle Test Results

T= ITERATIONS COMPLETED PAST DEADLINE(sec)

5 0.10 290 0.00000E+00

0.25 730 9.99500E-03

3 0.50 1510 9.995003-03

1.00 3040 9.995003-03

1 2.00 6300 9.995003-03

3 2.50 7470 9.99500E-03

3.00 8880 9.995003-03

3.50 10000 (complete) -

Table 3. Synchronous Circle Test Results

p TME ITERATIONS COMPLETED PAST DEADLINE(sec)

0.022 0 7.9956E-03

£ 0.023 0 7.01903-03

0.024 0 5.9814E-03

0.025 15 (complete) -

p Table 4. Asynchronous Jacobi Test Results

I
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ITERATIONS COMPLETED PAST DRADLINRfsec) I

0.0010 1 8.970003-03

0.0050 3 5.000003-03 3
0.0075 4 2.500003-03

0.0085 4 1.460003-03 1
0.0100 15 (complete) - 3

Table 5. Synchronous Jacobi Test Results I
The circle and Jacobi imprecise computation examples are

indicative of real-time applications. The results of these I
examples show the relative merits of both the synchronous and i

asynchronous approaches.

I
I
I
I

i

I
I
I
R
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5 Analysis and Conclusion

5.1 Analysis of the Test Results

IIn analyzing the results of the circle and Jacobi

5imprecise computation tests, several key observations can be
made. First and foremost, the synchronous and asynchronous

3approaches have been implemented and shown, to be feasible.
Both approaches have demonstrated their consistent behavior

5 within these example tests. Second, it is apparent that the

approach used for a particular application should depend on

the nature of the computation involved. The asynchronous

5approach demonstrated its capability to outdistance the

synchronous approach in the simple, short, highly repetitive

3 computation loop of the Monte Carlo circle test. On the

other hand, the synchronous approach was able to achieve a

precise result four times faster than the asynchronous

3 approach in the computation-intensive loop of the Jacobi

test. Finally, respectable deadline expiration times were

5turned in without either the synchronous or asynchronous
approaches employing any deadline checking heuristic algo-

rithms. For example, the synchronous mechanism could

5maintain a running average of the execution time of each
iteration. This average time could then be used in deciding

5whether or not another iteration should be triggered.
Another possible enhancement is changing the division factor

I of the calculated delay time in the asynchronous approach.

Altering this constant can help compensate for a lagging

I
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run-time system. 9
The results turned in by the RSF VAX will undoubtedly

vary between dissimilar systems. The more a run-time system 3
is geared for real-time performance the better the results I
will be. Conversely, the less a run-time system is geared

for real-time performance the worse the results will be. The 3
same circle and Jacobi tests run on a VADS machine produced

totally unreliable results. It was not uncommon to observe 9
deadline past times of one or two secondsl These observa-

tions added to the list of lessons learned in this project.

5.2 Lessons Learned

Through the course of this research effort, several

problems related to the Ada programming language and its

run-time environment were identified. First, the rendezvous I
is too costly in terms of execution time. The rendezvous has 3
been shown to require fifty times the execution time of a

procedure call [7). This is the one major drawback to the 3
synchronous approach to imprecise computations. The asyn-

chronous approach identified more severe and less deter- I
ministic problems.

Although the Ada tasking model is priority driven, it is

not preemptive. For this reason, priority inversion can £
occur and render the priority system useless. In the context

of the Monte Carlo circle example, when the higher priority

TIMER task becomes ready to run after its prescribed delay

I
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amount, it should not have to wait while the lower priority

compute task continues to execute. In this environment,

I deadlines can be missed by staggering amounts of time. Time

£slices can be used to compensate for this problem.
An Ada run-time system should allow the user to specify

3the time slice, or the amount of time a given task can hold
onto the processor. VAX Ada provides the non-standard pragma

TIME-SLICE. The documentation (81 suggests a minimum value

of 0.01 seconds. The VADS implementation is hard-wired to an

unrealistic one second [243. Running the asynchronous

3 imprecise computation tests on both systems demonstrated that

a VAX Ada implementation can achieve consistent deadline past

3 times while those achieved by the VADS implementation were

unruly and totally unacceptable. The bottom line is the

lower the time slice, the less priority inversion effects the

Icomputation.
The final problem area is the sense of time in Ada. The

5delay statement only gives a minimum delay. When this

problem is coupled with large time slices and an environment

fostering priority inversion, delays can be observed orders

5of magnitude greater than the requested delay. The VAX Ada

asynchronous imprecise computation results show acceptable,

l consistent results. With the time slice capability, maximum

delay can be kept in check.

These problems areas do not spell the death of Ada, nor

5 the death of any project implemented in Ada. The synchronous

I
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and asynchronous approaches to imprecise computation have 9
been implemented despite these drawbacks. The problems are

not insurmountable. Rather, they form an agenda for the 1
evolution of the Ada programming language.

5.3 Conclusion 3
The goal of this research effort was to investigate all

possible approaches to implementing imprecise computations in

Ada. Two approaches emerged out of a central idea. The

synchronous and asynchronous versions of the atomic computa- I
tIon loop approach were distinguished because of early timing I
concerns regarding the rendezvous. Both versions were

implemented in standard Ada code. Each version was demon- 5
strated using the Monte Carlo circle example and the Jacobi

example. Each example was painstakingly constructed in a I
straightforward manner. These examples illustrated that the 3
synchronous and asynchronous approaches were better suited

for different imprecise computation applications. But more 3
importantly, the examples showed that implementing imprecise

computations In Ada Is entirely possible. I

I

1

I
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Appendix A

I SYNCNRONOUBI MPRKCI B3CONPUATI ON

S
3
1
I
I
I
I
I
I
I
I
I
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with CALENDAR; I
generic

-- the task type --

type COMPUTATION is limited private; g
-- the pointer type to the task type --

type COMPUTATIONPTR is access COMPUTATION;

-- the result type of the computation -- I
type RESULTTYPE is private;

-- the error indicator type-- I
type ERROR_INDICATORTYPE is private;

-- the input argument type --

type INPUTTYPE is private;

-- procedure to initialize the compute task --

with procedure INITIALIZE(THE_COMPUTATION : in
COMPUTATIONPTR;

INPUT : in
INPUTTYPE);

-- procedure to call a rendezvous with compute loop --

with procedure COMPUTE(THRCOMPUTATION : in I
COMPUTATIONPTR;

COMPUTATION-COMPLETE : out
boolean); I

-- procedure to call a rendezvous with a handler --
with procedure HANDLE(THECOMPUTATION : in

COMPUTATIONPTR; I
HANDLER-NUMBER : in

integer;
LASTVALUE : in

RESULTTYPE;
LAST_ERRORINDICATOR : in

ERRORINDICATORTYPE);

-- procedure to stop the compute task --
with procedure STOP(THECOMPUTATION : in

COMPUTATIONPTR); I
package SYNCHRONOUS_IMPRECISECOMPUTATION is 3

procedure IMPCALL(THECOMPUTATION : in out
COMPUTATIONPTR;

DEADLINE : in CALENDAR.TIME;

INPUT : in INPUT-TYPE;
FINALRESULT : out RESULTTYPE);

3
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3 procedure IMPRETURN(INTERMEDIATERESULT : in
RESULT -TYPE;

ERRORJNDICATOR : in
ERRORINDICATOR-TYP3);

end SYNCHRONOUS-IMPRZCI SECOMPUTATION;
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with TEXT_O; use TEXT_IO;
with FLOATTEXTIO; use FLOATTEXTIO;
package body SYNCHRONOUSIMPRECISECOMPUTATION is

CURRENTVALUE : RESULTTYPE; 3
CURRENTERRORINDICATOR : ERROR_ INDICATOR_TYPE;

procedure IMPCALL(THE COMPUTATION : In out
COMPUTATIONPTR;

THEJfANDLER : in integer;-
DEADLINE : in CALENDAR.TIME;
INPUT : in INPUTTYPE;
FINALRESULT : out RESULTTYPE) is

COMPUTATIONCOMPLETED : boolean; 3
TIME_HACK : CALENDAR.TIMB;

begin
INITIALIZE(THECOMPUTATION, INPUT);
loop

COMPUTE(THECOMPUTATION,
COMPUTATIONCOMPLETED);

exit when COMPUTATIONCOMPLETED;

TIMEHACK := CALENDAR.CLOCK;

if CALENDAR.">"(TIMEHACK, DEADLINE) then
put("deadline expired by ");
put(float(calendar."-"(TIMEHACK,

deadline)), exp=>O);
put_line("secs. Calling handler...");

HANDLE(THE COMPUTATION,
THEHANDLER,
CURRENTVALUE,
CURRENT_ERROR INDICATOR);

exit;
end if;

end loop;
STOP(THECOMPUTATION);
FINALRESULT :- CURRENTVALUE;

end IMPCALL;

procedure IMPRETURN(INTERMEDIATE RESULT : in 3
RESULT TYPE;

ERRORINDICATOR : in
ERRORINDICATORTYPE) is

begin
CURRENTVALUE : INTERMEDIATERESULT;
CURRENTERRORINDICATOR := ERRORINDICATOR;

end IMPRETURN;

end SYNCHRONOUSIMPRECISECOMPUTATION; 3
|
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Appendix B

I ASYNCHRONOUSIMPRECISECOMPUTATION

I
3
I
I
I
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with CALENDAR; g
generic

-- the task type --
type COMPUTATION is limited private; g
-- the pointer type to the task type --
type COMPUTATIONYTR is access COMPUTATION;

-- the result type of the computation -- I
type RESULTTYPE is private;

-- the error indicator type--
type ERRORINDICATORTYPE is private;

-- the input argument type --
type INPUTTYPE is private;

-- procedure to start compute loop --
with procedure START_COMPUTATION(THECOPUTATION : in

COMPUTATIONPTR;
INPUT : in

INPUTTYPE);

-- procedure to call a handler --
with procedure HANDLE(LASTVALUE : in out

RESULTTYPE;
LAST.ERRORINDICATOR : in out

ERRORINDICATOR_TYPE); I
package ASYNCHRONOUSIMPRECISECOMPUTATION is

procedure IMPCALL(THE COMPUTATION : in out
COMPUTATI ON-PTR;

DEADLINE : in CALENDAR.TIHE;
INPUT : in INPUT TYPE;
FINALRESULT : out RESULT_TYPE);

procedure IMPRETURN(INTERMEDIATERESULT : in 1
RESULTTYPE;

ERRORINDICATOR : in
ERRORINDICATOR-TYPE;

STOPFLAG : in out
boolean);

end ASYNCHRONOUSIMPRECISECOMPUTATION; 1
I
I
I
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with TEXT 1O; use TEXT IO;
with FLOAT_TEXT10; use FLOATTEXT_10;
package body ASYNCHRONOUSJiMPRECISE_COMPUTATION is

I CURRENTVALUE : RESULTTYPE;
CURRENTERRORINDICATOR : ERROR-INDICATORTYPE;
STOPCOMPUTATIONFLAG : boolean := FALSE;

task TIMER Is
pragma PRIORITY(7);
entry RUNJOB(THEJOB : in out COMPUTATIONPTR;

- INPUT : in INPUTTYPE;
DEADLINE : in CALENDAR.TIME);

*end TIMER;

task body TIMER is

COMPUTATION_COMPLETED : boolean;
TIMEHACK : CALENDAR.TIME;
TIMELEFT : float;
DELAY TIME : DURATION;
HACKiI HACK2 : CALENDAR.TIME;

begin
accept RUN JOB(THEJOB : in out COMPUTATIONPTR;

INPUT : in INPUTTYPE;

DEADLINE : In CALENDAR.TIME) do
STARTCOMPUTATION(THEJOB, INPUT);
loop

TIMEHACK := CALENDAR.CLOCK;
TIMELEFT := float(CALENDAR."-"(DEADLINE,

TIMEHACK));
DELAYTIME := DURATION(TIMEJEFT / 2.0);
If DELAYTIME < DURATION'SMALL and then

DELAYTIME > 0.0 then
DELAYTIME := 0.0;

end if;
if DELAYTIME > 0.0 then

put("delaying ");
put(float(DELAYTIME));
put_line(" secs.");
HACK1 :- CALENDAR.CLOCK;
delay DELAY_TIME;
HACK2 := CALENDAR.CLOCK;
put("Actual delay was ");
put(float(CALENDAR."-"(HACK2,HACK1)));
putline(" secs.");

elseput("DEADLINE expired by "1;
put(float(CALENDAR."-"(TIMEHACK,

DEADLINE)));
put_line(" secs.");

U
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STOP_COMPUTATIONFLAG :- TRUE;
HANDLE (CURRENTVALUE ,

CURRENTERROR_INDICATOR);
end if;
exit when STOPCOMPUTATIONFLAG;

end loo;;

end RUN .JOB;
end TIMER; 5

S.. pF wre IMPCALL(THE COMPUTATION : in out
COMPUTAT IONPTR;

DEADLINE : in CALENDAR.TIME;
INPUT : in INPUTTYPE;
FINAL_RESULT : out RESULTTYPE) is

begin
TIMER.RUNJOB(THE_COMPUTATION,

INPUT, I
DEADLINE);

FINAL RESULT :- CURRENT-VALUE;
end IMPCALL;

procedure IMPRETURN(INTERMEDIATERESULT : in
RESULT TYPE; I

ERRORINDICATOR : in
ERROR IND I CATOR-TYPE;

STOPFLAG : in out
boolean) is

begin
if not STOPCOMPUTATIONFLAG then

CURRENT-VALUE := INTERMEDIATERESULT;
CURRENT_ERRORINDICATOR := ERRORINDICATOR;

end if;

-- If incoming stop flag is FALSE, then this is
-- merely a classic IMPRETURN call. If TRUE, then
-- this Is a signal that the computation has
-- completed.
if not STOPFLAG then

STOP FLAG :- STOPCOMPUTATIONFLAG;else
STOPCOMPUTATIONFLAG := STOPFLAG;

end if; 3
end IMPRETURN;

end ASYNCHRONOUS-IMPRECISECOMPUTATION; 5
I
U
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with CALENDAR; use CALENDAR;
package SYNCHRONOUS CIRCLECOMPUTATION is

subtype RESULTTYPE is float;

subtype ERRORTYPE is integer;

type INPUTTYPE is record
LOOPS_TO_COMPLETE : integer;
RADIUS : float;

end record; 3
task type TEST TASK is

entry INITIALIZE(INPUT : in INPUT TYPE);
entry COMPUTE(COMPUTATION COMPLETE : out boolean);
entry HANDLER(I .. 2)(LAST_RESULT : In RESULTTYPE;

LASTERROR: in ERROR_TYPE);
entry STOP;

end TESTTASK;

type TESTPTR is access TEST_TASK; 3
procedure INITIALIZE(THETASK : in TESTPTR;

INPUT : in INPUTTYPE);

procedure COMPUTE(THETASK : in TESTPTR;
COMPUTATIONCOMPLETE : out boolean);

procedure HANDLE(THETASK : In TESTPTR; I
HANDLER NUMBER : In integer;
LASTVALUE : in RESULTTYPE;
LASTERROR_INDICATOR : in ERRORTYPE);

procedure STOP(THETASK : In TESTPTR);

end SYNCHRONOUSCIRCLECOMPUTATION;

I
I
I
I
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with TEXT_1O; use TEXT 10;
with FLOATTEXT 10; use FLOAT_TEXTIO;
with INTEGERTEXTIO; use INTEGER_TEXTIO;
with SYNCHRONOUSCIRCLE_IMPRECISE_COMPUTATION;
use SYNCHRONOUS.CIRCLE_IMPRECISECOMPUTATION;
with RANDOMNUMBERGENERATOR;
use RANDOM_NUMBER_GENERATOR;
package body SYNCHRONOUSCIRCLECOMPUTATION is

procedure INITIALIZE(THETASK : in TEST.YTR;
b INPUT : in INPUTTYPE) is

THETASK.INITIALIZE(INPUT);3 1end INITIALIZE;

procedure COMPUTE(THETASK : in TESTPTR;
COMPUTATION_COMPLETE : out boolean) is

begin
THETASK.COMPUTE(COMPUTATIONCOMPLETE);

end COMPUTE;

procedure HANDLE(THETASK : in TESTPTR;
HANDLERNUMBER : in integer;
LASTVALUE : in RESULTTYPE;

g LASTERRORINDICATOR : in ERRORTYPE) isbegin

THETASK.HANDLER(HANDLERNUMBER)
(LASTVALUE,
LASTERRORINDICATOR);end HANDLE;

3 procedure STOP(THETASK : in TESTPTR) is
begin

THETASK.STOP;5end STOP;

3task body TESTTASK is
FINISHED : boolean := false;
ERROR : ERRORTYPE := 0;
M : Integer := 0;
N : integer =0;
RADIUS : float;
RADIUS_SQUARED : float;
DIAMETER : float;
SQUAREAREA : float;
X, Y : float;
AREA : RESULTTYPE;
LOOPNUM : integer;3 SEED : integer;

I
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begin
accept INITIALIZE(INPUT : in INPUTTYPE) do

RADIUS :- INPUT.RADIUS;
RADIUS_SQUARED : RADIUS ** 2;
DIAMETER := 2.0 * RADIUS;
SQUAREAREA := DIAMETER ** 2;
LOOPJNUM := INPUT.LOOPSTOCOMPLETE;
SEED :- 1;

end INITIALIZE; a
loopselect

accept COMPUTE(COMPUTATIONCOMPLETE : out

boolean) do
RANDOM(X,SEED);RANDOM(Y,SEED);

X =X DIAMETER RADIUS;Y := Y * DIAMETER - RADIUS;

N := N + 1;
if (X**2 + Y**2) <= RADIUS_SQUARED then

M := M + 1;
end if;
ERROR := ERROR + 1;
if ERROR > LOOPJNUM then

COMPUTATION-COMPLETE := TRUE;else
COMPUTATION-COMPLETE 

:= FALSE;
end If;
if ERROR rem 10 = 0 or

ERROR > LOOP NUM then I
AREA := SQUAREAREA *

float(M) / float(N);
IMPRETURN(AREA, ERROR); I

end if;

end COMPUTE;
accept HANDLER(1)

(LASTRESULT : in RESULTTYPE;
LASTERROR : in ERRORTYPE) do

-- output number of iterations --
put("Computation looped ");
put(LASTERROR);
put-line(" times.");
-- IMPRETURN if modification made --

end HANDLER;or
accept HANDLER(2)

(LASTRESULT : in RESULTTYPE;
LASTERROR : in ERRORTYPE) do

null; -- this handler does nothing -- I
-- IMPRETURN if modification made --

end HANDLER;
or |I

I
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accept STOP do
FINISHED :- true;

end STOP;
end select;
exit when FINISHED;

end loop;i end TESTTASK;

end SYNCHRONOUS_CIRCLECOMPUTATION;

3
I
I
i
I
I
I
I
I

I
U
i
I

U
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with SYNCHRONOUSCIRCLECOMPUTATION;
use SYNCHRONOUSCIRCLECOMPUTATION;
with SYNCHRONOUSIMPRECISECOMPUTATION;
package SYNCHRONOUSCIRCLEIMPRECISECOMPUTATION is

new SYNCHRONOUSIMPRECISECOMPUTATION
(COMPUTATION => TESTTASK,
COMPUTATIONPTR => TESTPTR,
RESULT-TYPE => RESULTTYPE,
ERROR_INDICATORTYPE => ERRORTYPE,
INPUTTYPE => INPUTTYPE,
INITIALIZE => INITIALIZE,
COMPUTE => COMPUTE,
HANDLE => HANDLE,
STOP => STOP); g

I
I
I
I
I
I
U
I
I
I
I
I
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with SYNCHRONOUSCIRCLECOMPUTATION;Iuse SYNCHRONOUSCIRCLECOMPUTATION;
with SYNCHRONOUS_-CIRCLEIMPRECISECOMPUTATION;
use SYNCHRONOUS_-CIRCLEIMPRECISECOMPUTATION;Iwith CALENDAR;, use CALENDAR;
with TEXT 10; use TEXT -10;
with FLOAT..TEXTIO; use FLOATTEXTjO0;5with INTEGER_TEXTIO; use INTEGERTEXT_10;
procedure SYNCHRONOUS_CIRCLETEST is

3 pragma TINESLICE(O.Ol);

MYTASKPTR : TESTPTR :=new TEST-TASK;
DEAD : CALENDAR.TIME;
RESULT : RESULT_TYPE;
COMPTIHE : float;
IWINIPUT : INPUTTYPE;

3 begin
put("Enter the circle radius - )
get(MY_INPUT.RADIUS);I put("Enter the number of iterations to complete =>")
get(MY_INPUT.LOOPSTOCOMPLETE);
put("Enter the computation duration in seconds =>")I .;et(CUMPTIME);
put-line("nSynchronous CIRCLE TEST starting...");
DEAD := CALENDAR.CLOCK + DIRATION(COMP TIME);3 IMPCALL (MYTASK..YTR,

1 "
DEAD,
MY_INPUT,I RESULT);

put("TEST ending... RESULT =>")
put(RESULT, EXP => 0, AFT => 2);I new line;

end SYNCHRONOUSCIRCLE-TEST;
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with CALENDAR; use CALENDAR;

with SYSTEM; use SYSTEM;
package ASYNCHRONOUS_CIRCLECOMPUTATION is

I subtype RESULTTYPE is float;

subtype ERRORTYPE is integer;

type INPUTTYPE is record
LOOPSTOCOMPLETE i integer;
RADIUS : float;

end record;

task type TESTTASK is
pragma PRIORITY(0);
entry START_COMPUTATION(INPUT : in INPUTTYPE);

end TESTTASK;

type TESTPTR is access TESTTASK;

procedure STARTCOMPUTATION(THETASK : in TEST PTR;
INPUT : in INPUT_TYPE);

procedure HANDLE(LAST VALUE : in out
RESULTTYPE;

LASTERRORINDICATOR : in out

end ASYNCHRONOUSCIRCLECOMPUTATION; 
ERRORTYPE);

l
1
I
I
I
1
I
I
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with TEXT_1O; use TEXT_IO;
with FLOATTEXT_IO; use FLOATTEXT_10;
with INTEGERTEXTIO use INTEGERTEXT 10;
with ASYNCHRONOUSCIRCLE_IMPRRCISECOMPUTATION;

use ASYNCHRONOUSCIRCLEIMPRECISECOMPUTATION;
with RANDOMNUMBER_GENERATOR;
use RANDOMNUMBERGENERATOR;
package body ASYNCHRONOUS_CIRCLECOMPUTATION is 5

procedure STARTCOMPUTATION(THETASK : in TESTPTR;
INPUT : in INPUTTYPE)

is
begin

THETASK.STARTCOMPUTATION(INPUT);
end STARTCOMPUTATION;

procedure HANDLE(LASTVALUE : in out
RESULTTYPE;

LASTERRORINDICATOR : in out
ERRORTYPE) is

begin
put("Computation looped ");
put(LASTERRORINDICATOR);
put line(" times.");

end HANDLE; 3
task body TEST-TASK is 1

FINISHED : boolean := false;
ERROR : ERRORTYPE := 0;
M : integer := 0; 1
N : integer 0;
RADIUS : float;
RADIUSSQUARED : float;
DIAMETER : float;
SQUAREAREA : float;
X, Y : float;
AREA : float; I
LOOPNUM : integer;
SEED : integer; I

begin
accept STARTCOMPUTATION(INPUT : in INPUTTYPE) do

RADIUS :- INPUT.RADIUS;
LOOPNUM := INPUT.LOOPS TO COMPLETE;
RADIUS_SQUARED := RADIUS ** 2;
DIAMETER := 2.0 * RADIUS;
SQUARE AREA := DIAMETER * 2;
SEED := 1;

end STARTCOMPUTATION;
delay DURATION'SMALL;

U
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~loop
l RANDOM( X, SEED);

RANDOM(Y,SEED);
X : X DIAMETER - RADIUS;
Y Y * DIAMETER - RADIUS;
N :=N + 1;
if (X**2 + Y**2) <= RADIUSSQUARED thenM := M + 1;
end if;
ERROR := ERROR + 1;
if ERROR > LOOPNUM then

FINISHED := TRUE;
end if;
if (ERROR rem 10 = 0) or FINISHED then

AREA := SQUAREAREA * float(M) / float(N);
IMPRETURN(AREA, ERROR, FINISHED);end If;

exit when FINISHED;
end loc;

end TEST-TASK;

Iend ASYNCHRONOUSCIRCLE_COMPUTATION;
U
I
l
1
I
1
I
I
3
U
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with ASYNCHRONOUS CIRCLECOMPUTATION;
use ASYNCHRONOUSCIRCLE COMPUTATION;
with ASYNCHRONOUSIMPRECISECOMPUTATION;
package ASYNCHRONOUSCIRCLEIMPRECISECOMPUTATION is

new ASYNCHRONOUS IMPRECISECOMPUTATION
(COMPUTATION => TESTTASK,
COMPUTATIONPTR > TESTPTR,
RESULTTYPE => RESULT_TYPE,
ERRORINDICATORTYPE => ERRORTYPE,
INPUTTYPE => INPUTTYPE,
STARTCOMPUTATION => STARTCOMPUTATION, H

I

I
U

I
I

I
U
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with ASYNCHRONOUS_CIRCLE COMPUTATION;
use ASYNCHRONOUSCIRCLECOMPUTATION;
with ASYNCHRONOUSCIRCLE IMPRECISE -COMPUTATION;
use ASYNCHRONOUSCIRCLE_IMPRECISECOMPUTATION;

wihCALENDAR; use CALENDAR;

with TEXT 10; use TEXTJIO;
with FLOATTEXT 10; use FLOAT TEXT_10;
with INTEGERTEXT_10; use INTEGERTEXTJIO;

procedure ASYNCHRONOUSCIRCLE-TEST Is

3 pragma TIME-SLICE(O.Ol);

MYTASK-PTR : TESTPTR :-new TEST-TASK;
DEAD : CALENDAR.TIME;
RESULT : RESULT..TYPE;

bgCOMPTIME : float;

nMY-INPUT : INPUTTYPE;

put("Enter the circle radius>")
get(MYINPUT.RADIUS);
put("Eniter the number of iterations to complete =>")
get(MY_INPUT.LOOPSTOCOMPLETE);
put("Enter the computation duration in seconds =>")3 get(COMPTIME);
putline( "Asynchronous CIRCLE TEST starting...");
DEAD := CALENDAR.CLOCK + DLRATION(COMPTIME);3 IMPCALL(MYTASKPTR,

DEAD,
MYINPUT,
RESULT);I put("CIRCLE TEST ending... CIRCLE AREA RESULT => )

put(RESULT, EXP => 0, AFT ->2);

new-line;
end ASYNCHRONOUSCIRCLETEST;
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with CALENDAR; use CALENDAR;
package SYNCHRONOUSJACOBICOMPUTATION is

3 N : constant integer :- 3;

type RESULTTYPE is array(l .. N) of float;

5- subtype ERRORTYPE is integer;

type COEFFICIENT-TYPE is array(l .. N, 1 .. N)3 of float;

type INPUT-TYPE is record
COEFFICIENTS : COEFFICIENTTYPE;
RIGHTHANDSIDE : RESULT_TYPE;
XOLD : RESULTTYPE;
TOL : float;

* end record;

task type TESTTASK is
entry INITIALIZE(INPUT : in INPUTTYPE);
entry COMPUTE(COMPUTATIONCOMPLETE : out boolean);
entry HANDLER(1 .. 2)

(LAST_RESULT in RESULTTYPE;
LAST_ERROR z In ERROR TYPE);

entry STOP;
end TESTTASK;

I type TESTPTR is access TESTTASK;

procedure INITIALIZE(THE TASK : in TEST PTR;
INPUT : in INPUTTYPE);

procedure COMPUTE(THETASK : in TESTPTR;
COMPUTATIONCOMPLETE : out boolean);

procedure HANDLE(THETASK : in TESTPTR;
HANDLERNUMBER : in integer;
LASTVALUE : in RESULTTYPE;
LASTERROR_INDICATOR : in ERRORTYPE);

3 procedure STOP(THETASK : in TESTPTR);

end SYNCHRONOUS_JACOBICOMPUTATION;

.I
!
I
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with TEXT_10; use TEXT_10;
with FLOATTEXT_IO; use FLOAT_TEXT_10;
with INTEGER_TEXTIO; u-e INTEGERTEXTIO;
with SYNCHRONOUSJACOBI_IMPRECISECOMPUTATION;

use SYNCHRONOUSJACOBI_IMPRECISECOMPUTATION;
package body SYNCHRONOUSJACOBICOMPUTATION is

procedure INITIALIZE(THETASK : in TEST PTR;
INPUT : in INPUT_TYPE) is

begin
THETASK.INITIALIZE(INPUT);

end INITIALIZE;

procedure COMPUTE(THETASK : in TESTPTR; 3
COMPUTATIONCOMPLETE : out boolean) is

begin
THE_TASK. COMPUTE ( COMPUTATI ONCOMPLETE);

end COMPUTE;

procedure HANDLE(THE TASK : in TESTPTR;
HANDLERNUMBER : in integer;
LASTVALUE : in RESULTTYPE;
LASTERRORINDICATOR : in ERRORTYPE) is

begin
THETASK.HANDLER(HANDLERNUMBER)

(LAST VALUE, LASTERRORINDICATOR);end HANDLE;

procedure STOP(THETASK : in TESTPTR) Is 3
begin

THETASK.STOP;
end STOP;

task body TESTTASK is 3
FINISHED : boolean := false;
ERROR : ERROR TYPE : 0;
COEFF : COEFFTCIENT TYPE;
R H_S : RESULTTYPE;-- right-hand-side --
XOLD : RESULTTYPE; -- solution guess --

TOL : float; -- tolerance --
XNEV : RESULT TYPE; -- new solution --
C : COEFFICIENT-TYPE; -- norm coeff
D : RESULTTYPE; -- normalized r-h-s
MAXNEW,
NNEW, --"NEW" In text but an Ada reserved word.
MAXDIF,
DIFF float;

I
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begin
accept INITIALIZE(INPUT : in INPUTTYPE) do

COEFF := INPUT.COEFFICIENTS;
RJHS : INPUT.RIGHT_ HAND_SIDE;
XD : INPUT.XOLD;
TOL := INPUT.TOL;

-- Normalize matrix --
for J in 1 .. N loop

for K in 1 .. J - 1 loop
C(J,K) := COEFF(J,K) / COEFF(J,J);

end loop;
for K in J + 1 .. N loop

C(J,K) := COEFF(J,K) / COEFF(J,J);
end loop;
D(J) := RH_S(J) / COEFF(J,J);

end loop;3 end INITIALIZE;

loop
select

accept COMPUTE(COMPUTATIONCOMPLETE : out
boolean) do

MAXNEW := 0.0;
MAXDIF := 0.0;
for J in 1 .. N loop

XNEW(J) := D(J);
for K in 1 .. J - 1 loop

XNEW(J) := XNEW(J) - C(J,K)
* XOLD(K);

end loop;
for K in J + 1 .. N loop

XNEW(J) :- XNEW(J) - C(J,K)
* XOLD(K);3end loop;

-- Find max absolute difference
-- between old and new elements.
DIFF := ABS(XNEW(J) - XOLD(J));
if DIFF > MAXDIF then

MAXDIF := DIFF;
end If;
KNEW :- ABS(XNEW(J));
if KNEW > MAXNEW then

MAXNEW := KNEW;
end if;

end loop;5 ERROR := ERROR + 1;

-- Let present estimate be improved
-- estimate

XOLD(1 .. N) := XNEW(1 .. N);

I
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if MAXNEW /- 0.0 and then
(MAXDIF / MAXNEW) <- TOL then

COMPUTATIONCOMPLETE := TRUE;
else

COMPUTATIONCOMPLETE := FALSE;
end If;

-- Report current result --

IMPRETURN(XNEW, ERROR);

end COMPUTE;
or

accept HANDLERMl)
(LAST_RESULT : in RESULTTYPE;
LAST ERROR : in ERRORTYPE) do I

put("Computation looped ");

put(LASTERROR);
put_line(" times.");
-- IMPRETURN If modification made --

end HANDLER;or
accept HANDLER(2)

(LASTRESULT : in RESULTTYPE;
LASTERROR : in ERROR_TYPE) do

null; -- this handler does nothing -- U
-- IMPRETURN if modification made --

end HANDLER;or
accept 

STOP do
FINISHED := true;

end STOP;
end select; I
exit when FINISHED;

end loop;
end TESTTASK;

end SYNCHRONOUSJACOBICOMPUTATION;

I
U
U
U
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with SYNCHRONOUSJACOBICOMPUTATION;
use SYNCHRONOUSJACOBICOMPUTATION;
with SYNCHRONOUSIMPRECISECOMPUTATION;
package SYNCHRONOUSJACOBIIMPRECISECOMPUTATION is

new SYNCHRONOUSIMPRECISECOMPUTATION
(COMPUTATION => TEST TASK,
COMPUTATION_.PTR => TESTPTR,
RESULTTYPE => RESULTTYPE,
ERROR INDICATORTYPE > ERROR_TYPE,
INPUTTYPE => INPUTTYPE,
INITIALIZE => INITIALIZE,
COMPUTE => COMPUTE,
HANDLE => HANDLE,
STOP => STOP);

I
i
I
1
I
I
I
I
I
I
I
I
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with SYNCHRONOUSJACOBICOMPUTATION;
use SYNCHRONOUS JACOBICOMPUTATION;
with SYNCHRONOUSJACOBIIMPRECISE-COMPUTATION;
use SYNCHRONOUSJACOBIIMPRECISECOMPUTATION;

with CALENDAR; use CALENDAR;
with TEXTIO; use TEXTIO;
with FLOATTEXT_IO; use FLOATTEXT_IO;
with INTEGERTEXT_IO; use INTEGER_TEXT_IO;
procedure SYNCHRONOUSJACOBITEST is

MYTASKPTR : TESTPTR := new TESTTASK;
DEAD : CALENDAR.TIME;
RESULT : RESULTTYPE;
COMP_TIME : float;
INPUT INPUT-TYPE;

begin
for INDEX in 1 .. N loop

put-line("Enter the coefficients and " &
"right hand side for equation " &
integer'image(INDEX));

for NUMCOEFF in 1 .. N loop
get(INPUT.COEFFICIENTS(INDEX,NUMCOEFF));

end loop;
get(INPUT.RIGHTHANDSIDE(INDEX));

end loop;
for INDEX in 1 .. N loop

INPUT.XOLD(INDEX) := 0.0;
end loop; I
put("Enter tolerance factor => ");
get(INPUT.TOL);
put("Enter the computation duration in seconds => ");
get(COMPTIME);
put.line("Synchronous Jacobi test starting...");
DEAD := CALENDAR.CLOCK + DURATION(COMPTIME);
IMPCALL(MYTASKPTR,

1,
DEAD,
INPUT, I
RESULT);

put-line("Jacobi TEST ending... ");
for INDEX in 1 .. N loop I

put("X");1

put(INDEX,WIDTH => 1);
put(" => ");
put(RESULT(INDEX), EXP => 0);
newline.

end loop;
end SYNCHRONOUSJACOBI-TEST;

I
I



1
~103

1

Appendix

IAsynchronous Jacobi Test Files

1
I
I
I
I
I
I
I
I
I
I
I
I



104

with CALENDAR; use CALENDAR;
with SYSTEM; use SYSTEM; I
package ASYNCHRONOU_ JACOBI-COMPUTATION is

N : constant integer := 3; 3
type RESULTTYPE is array (1 .. N) of float;

subtype ERRORTYPE is integer; I
type COEFFICIENTTYPE is array(l .. N, 1 .. N) of float; 3
type INPUTTYPE is record

COEFFICIENTS : COEFFICIENTTYPE;
RIGHTHANDSIDE : RESULTTYPE;
XOLD : RESULTTYPE;
TOL : float;

end record; 3
task type TESTTASK is

pragma PRIORITY(O);
entry STARTCOMPUTATION(INPUT : in INPUTTYPE);

end TESTTASK;

type TESTPTR is access TESTTASK; 3
procedure STARTCOMPUTATION(THETASK : in TEST PTR;

INPUT : in INPUTTYPE); g
procedure HANDLE(LASTVALUE : in out

RESULTTYPE;
LASTERRORINDICATOR : in out -

ERRORTYPE);

end ASYNCHRONOUSJACOBICOMPUTATION; 3
I
I

I

I
U
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wth TEXT_IO; use TEXT_10;

with FLOAT_TEXT_IO; use FLOATTEXT_IO;
with INTEGER TEXT_10; use INTEGERTEXT_10;
with ASYNCHRONOUSJACOBI_IMPRECISECOMPUTATION;
"se ASYNCHRONOUSJACOBIIMPRECISECOMPUTATION;package body ASYNCHRONOUS_JACOBI_COMPUTATION is

procedure STARTCOMPUTATION(THETASK : in TESTPTR;
INPUT : in INPUTTYPE) is

begin
THETASK.STARTCOMPUTATION(INPUT);

end STARTCOMPUTATION;

procedure HANDLE(LAST_VALUE : in out
RESULTTYPE;

LASTERRORINDICATOR : in out
ERROR-TYPE) isI begin

put("Computation looped ");
put(LASTERRORINDICATOR);
put-line(" times.");

end HANDLE;

3task body TESTTASK is

FINISHED : boolean := false;
ERROR : ERRORTYPE = 0;
COEFF : COEFFICIENT TYPE; -- coefficient input
R H S : RESULTTYPE; -- right-hand-side
XOLD : RESULTTYPE; -- solution guess
TOL : float; -- tolerance
XNEW : RESULTTYPE; -- new solution vector
C :COEFFICIENTTYPE; -- norm input coeff
D : RESULTTYPE; normalized r_h_sMAXNEW,
NNEW, -- "new" in text but reserved
MAXDIF,
bi F: float;

begin
accept STARTCOMPUTATION(INPUT : In INPUT-TYPE) do

COEFF := INPUT.COEFFICIENTS;

R_H_S := INPUT.RIGHTHANDSIDE;
XOLD := INPUT.XOLD;
TOL = INPUT.TOL;

end STARTCOMPUTATION;3delay duration'small;
-- Normalize matrix --
for J in 1 .. N loop

for K in 1 .. J - 1 loop

I
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C(JK) := COEFF(J, K) / COEFF(J, J);
end loop;
for K in J + 1 .. N loop

C(JK) := COEFF(J, K) / COEFF(J, J);
end loop; I
D(J) := RHS(J) / COEFF(J, J);

end loop;

-- Iterate improvement until required
-- accuracy is achieved
loop

MAXNEW := 0.0; I
MAXDIF : 0.0;
for J in 1 . N loop

XNEW(J) .= D(J);
for K in 1 .. J - 1 loop

XNEW(J) : XNEW(J) - C(JpK) * XOLD(K);
end loop;
for K in J + 1 .. N loop

XNEW(J) := XNEW(J) - C(J,K) * XOLD(K);
end loop; 3
-- Find max absolute difference
-- between old and new elements.
DIFF := ABS(XNEW(J) - XOLD(J));
if DIFF > MAXDIF then

MAXDIF := DIFF;
end if;
NNEW := ABS(XNEW(J));
if NNEW > MAXNEW then

MAXNEW := NNEW;
end if;

end loop;

-- Let present estimate be improved estimate
XOLD(l .. N) := XNEW(1 .. N); I
ERROR := ERROR + 1;
if MAXNEW /= 0.0 and then

(MAXDIF / MAXNEW) <= TOL then U
FINISHED := TRUE;

end if;
IMPRETURN(XNEW, ERROR, FINISHED);
exit when FINIaHED;end loop;

exception I
when CONSTRAINT_ERROR I NUMERICERROR =>

putline("NUMERIC ERROR - Diverging solution");

end TESTTASK;

end ASYNCHRONOUS_3ACOBI_COMPUTATION;

end
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with ASYNCHRONOUSJACOBICOMPUTATION;
use ASYNCHRONOUSJACOBI_CCXPUTATIO-,

with ASYNCHRONOUSIMPRECISECOMPUTATION;
package ASYNCHRONOUSJACOBIIMPRECISECOMPUTATION is

new ASYNCHRONOUS_IMPRECISE -COMPUTATION
(COMPUTATION => TESTTASK,

COMPUTATIONPTR => TEST-PTR,
RESULTTYPE => RESULTTYPE,
ERROR_INDICATORTYPE => ERRORTYPE,
INPUTTYPE => INPUT-TYPE,
START-COMPUTATION -> STARTCOMPUTATION,
HANDLE => HANDLE);

I
I
I
I
I
I
I
I
I
I
I
I
U
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withASYCHRNOUS- JCO~_POMUTArom
uish ASYNCHRONOUS_JqACOBI -COMPUTATION;

wit _ IHOOU-AOIrm~cs-OMUAI
use ASYNCHRONOUS3JACOBIIPIECOMPUTATI ON;

with CALENDAR; use CALENDAR;
with TBXTIO; use TEXT 10;
with FLOAT-TEXT_1O; use FLOATTEXTIO;
with INTEGERTEXT 10; use INTEGERTEXT 10;

procedure ASYNCHRONOUS3jACOB.TBST is

pragma TIME-SLICE(0.01);3

MYTASK_PTR : TESTPTR :-new TEST...ASK;
DEAD : CALENDAR.TIME;
RESULT : RESULTTYPE;

COMPTIME : float;
INPUT : INPUTTYPE;

beginI
for INDEX in 1 .. N loop

put-line("Enter the coefficients and &

"right hand side for equation &I
integer' image( INDEX));

for NUMCOEFF in 1 .. N loop
get(INPUT.COEFFICIENTS(INDEXNUKCOEFF));

end loop;I
get(INPUT.RIGHTHANDBIDE(INDEX));

end loop;
for INDEX In 1 .. N loopI

INPUT.XOLD(INDEX) :- 0.0;
end loop;

put("Enter tolerance factor =>")I
get( INPUT.TOL);
put("Enter the computation duration in seconds = )
get(COMP_TIME);

put line("Asynchronous Jacobi TEST starting...")
DEAD := CALENDAR.CLOCK + DURATION(COMP-TIME);
IMPCALL(MYTASKPTR,

DEAD..I
INPUT,
RESULT);

put-line("Jacobi TEST ending...")
for INDEX in 1 .. N loop

put("X");
put(INDEX,WIDTH => 1);3
put(" -> ");
put(RESULT(INDEX), EXP => 0);
new -line;

end loop; _I

end ASYNCHRONOUSJACOBI TEST;
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